Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
10. ПРЕВРАЩЕНИЕ МАРТЕНСИТА И ОСТАТОЧНОГО АУСТЕНИТА ПРИ НАГРЕВЕ (ОТПУСК СТАЛИ)Термическую обработку, заключающуюся в нагреве закаленной стали до температуры ниже точки Структура закаленной стали — мартенсит и остаточный аустенит — являются неравновесными фазами. Переход стали в более устойчивое состояние должен сопровождаться распадом мартенсита и остаточного аустенита с образованием структуры, состоящей из феррита и цементита. Распад этих фаз идет по диффузионному механизму, и поэтому скорость процесса в основном
Рис. 127. Схема возникновения искажений решетки при образовании зародыша карбида внутри кристаллика a-твердого раствора. Решетки карбида и а-фазы связаны между собой (когерентны). Белые кружки — атомы железа, черные — атомы углерода обусловлена температурой нагрева. Из указанных фаз при нагреве в первую очередь начинает распадаться мартенсит. Распад мартенсита (первое превращение при отпуске). На первой стадии превращения, протекающего при температуре ниже 200 °С, в кристаллах мартенсита образуются карбиды. На образование частиц этих карбидов углерод расходуется только из участков мартенсита, непосредственно окружающих кристаллы выделившихся карбидов. Концентрация углерода в этих участках резко уменьшается, тогда как более удаленные участки сохраняют исходную концентрацию углерода, полученную после закалки. Таким образом, после нагрева до низких температур (ниже 150 °С) в стали наряду с частицами выделившихся карбидов одновременно присутствуют два В связи 6 этим данный тип распада мартенсита называют двухфазным. При температурах меньше 200 °С скорость диффузии мала, поэтому образующиеся частицы карбидов не увеличиваются, и распад мартенсита сопровождается зарождением новых частиц карбида, обычно на границах кристаллов мартенсита и в местах с повышенной плотностью дефектов. Выделяющиеся карбидные частицы имеют форму тонких пластинок толщиной несколько атомных слоев и длиной несколько десятков нанометров. Пластинки 8 карбида когерентно связаны с решеткой а-раствора (рис. 127). Вследствие того, что удельные объемы карбида и а-раствора различны, между ними возникают сильные микроискажения кристаллических решеток обеих фаз. Вторая стадия распада мартенсита протекает при температуре При этих температурах отпуска диффузия углерода возрастает, и кристаллы карбидов укрупняются в результате притока атомов углерода из областей твердого раствора (мартенсита) с повышенной концентрацией углерода. Поэтому в конечном счете концентрация углерода в кристаллах мартенсита оказывается близкой к однородной. Частицы карбидов, образующиеся при низкотемпературном отпуске, по кристаллографическому строению и составу отличаются от цементита. В мартенсите после низкотемпературного отпуска присутствует гексагональный При низкотемпературном отпуске легированных сталей не происходит диффузионного перераспределения легирующих элементов и поэтому выделяющиеся частицы карбидов имеют такое же среднее содержание легирующих элементов, как и в мартенсите. Структуру, образующуюся в результате распада мартенсита при температурах ниже 350 °С, называют отпущенным мартенситом, который отличается от мартенсита закалки меньшей концентрацией в нем углерода и включением дисперсных кристалликов Обеднение раствора углеродом приводит к тому, что степень его тетрагональности Легирующие элементы оказывают незначительное влияние на распад мартенсита только при температурах ниже Превращение остаточного аустенита (второе превращение при отпуске). При отпуске высокоуглеродистых и многих легированных среднеуглеродистых сталей, содержащих повышенное количество остаточного аустенита при температуре 200-300 °С происходит его распад. Механизм распада остаточного аустенита, по-видимому, близок к механизму бейнитного превращения переохлажденного аустенита (см. с. 176). В результате превращения остаточного аустенита образуются те же фазы, т. е. обедненный углеродом мартенсит и частицы карбидов, что и при отпуске закаленного мартенсита при той же температуре, но структурное состояние продуктов распада отличается от состояния продуктов, получаемых при превращении мартенсита. Большинство легирующих элементов не только увеличивает количество остаточного аустенита в закаленной стали из-за снижения температуры Снятие внутренних напряжений и карбидное превращение (третье превращение при отпуске). При температуре 350-400 РС полностью завершается процесс выделения углерода из а-раствора (мартенсита), происходит нарушение когерентности и обособление решеток феррита и карбида, связанное с одновременным протеканием карбидного превращения, в результате которого образуется цементит Кроме того, изменяются размеры и форма карбидных частиц (она приближается к сфероидальной). Наряду с карбидными превращениями при этих температурах отпуска также происходит изменение структуры — полигонизация а-фазы и релаксация макро- и микронапряжений, возникающих при закалке в процессе мартенситного превращения. Образующуюся после отпуска при Коагуляция карбидов. Повышение температуры отпуска до Коагуляция карбидов в процессе отпуска происходит вследствие переноса атомов углерода через Частицы карбидов в структуре троостита или сорбита отпуска в отличие от троостита и сорбита, полученных в результате распада переохлажденного аустенита, имеют зернистое, а не пластинчатое строение. Образование зернистых структур улучшает многие свойства стали. При одинаковой твердости, временном сопротивлении и пластичности сталь с зернистой структурой имеет более высокие значения предела текучести, относительного сужения и ударной вязкости. В результате коагуляции размер частиц карбидов становится Легирующие элементы Влияние отпуска на механические свойства. Распад мартенсита при отпуске влияет на все свойства стали. При низких температурах отпуска (до 200-250 °С) уменьшается склонность стали к хрупкому разрушению. В случае низкотемпературного отпуска твердость закаленной и отпущенной стали мало зависит от содержания в ней легирующих элементов и определяется в основном содержанием углерода в а-растворе (мартенсите). В связи с этим высокоуглеродистые стали, имеющие высокую твердость после закалки, сохраняют ее (более высокое содержание углерода в мартенсите) и после отпуска при температурах до 200-250 °С. Прочность и вязкость стали при низких температурах отпуска несколько возрастает вследствие уменьшения макро- и микронапряжений и изменения структурного состояния. Повышение температуры отпуска от 200—250 до 500-600 °С заметно снижает твердость, временное сопротивление, предел текучести и повышает относительное удлинение, сужение (рис. 128, а) и трещиностойкость Все легированные стали, особенно содержащие карбидообразующие элементы, после отпуска при одинаковых температурах
Рис. 128. Влияние температуры отпуска на механические свойства закаленной стали с 0,45% С (а) и изменение ударной вязкости легированной стали в зависимости от температуры отпуска и последующей скорости охлаждения (б) обладают более высокой твердостью, чем углеродистые, что связано с замедлением процесса распада мартенсита, образования и коагуляции карбидов. В сталях, содержащих большое количество таких элементов, как хром, вольфрам или молибден, в результате отпуска при высоких температурах (500-600 °С) наблюдается даже повышение твердости, связанное с выделением в мартенсите частиц специальных карбидов, повышающих сопротивление пластической деформации (дисперсное упрочнение). Хрупкость при отпуске легированных сталей. При отпуске (250—400 и 500-550 °С) некоторых легированных сталей снижается ударная вязкость. Такое снижение вязкости получило название отпускной хрупкости. В легированной стали могут возникнуть два вида отпускной хрупкости (рис. 128, б). Первый вид отпускной хрупкости, называемой необратимой отпускной хрупкостью, или хрупкостью I рода, наблюдается в результате отпуска при 250-400 °С. Этот вид хрупкости присущ в той или другой мере всем сталям. Отличительной особенностью хрупкости I рода является ее необратимый характер; повторный отпуск при той же температуре не улучшает вязкости. Хрупкость этого вида устраняется нагревом до температуры свыше 400 °С, снижающим, однако, твердость. Последующий нагрев при 250 — 400 °С не снижает ударную вязкость. Сталь в состоянии необратимой отпускной хрупкости имеет блестящий межкристаллитный излом. Хрупкое состояние обусловлено возникновением объемно-напряженного состояния, получающегося при неоднородном распаде мартенсита. В связи с этим отпуск в области температур наиболее интенсивного развития хрупкости I рода не проводят. Второй вид отпускной хрупкости, называемой обратимой отпускной хрупкостью, или хрупкостью II рода, наблюдается в некоторых сталях определенной легированности, если они медленно охлаждаются (в печи или даже на воздухе) после отпуска при 500-550 °С. При развитии хрупкости II рода происходит сильное уменьшение ударной вязкости и, что самое главное, повышение порога хладноломкости. В стали в состоянии хрупкости II рода уменьшаются работа зарождения трещины и особенно ее распространение. Этот вид хрупкости не возникает, если охлаждение о температуры отпуска проводят быстро, например в воде (см. рис. 128, б). При быстром охлаждении с температур отпуска 500-550 °С излом — волокнистый, характерный для вязкого состояния. После медленного охлаждения получается хрупкий кристаллический излом. Существенным признаком хрупкоети II рода является ее обратимость. Хрупкость, возникшая в результате медленного охлаждения с 500-550 °С, может быть устранена повторным отпуском при 600-650 °С с последующим быстрым охлаждением. Она может быть вызвана вновь дополнительным отпуском определенной длительности при 500-550 °С. Хрупкость II рода наиболее часто наблюдается в сталях, содержащих повышенное количество фосфора, марганца, кремния, хрома или же при одновременном введении в сталь хрома и никеля или марганца. Введение в сталь молибдена или вольфрама в небольшом количестве Появление хрупкости II рода наиболее вероятно связано с диффузией растворенных атомов некоторых элементов к границе зерна и насыщением поверхностных слоев зерна этими элементами без выделения избыточных мелкодисперсных фаз (карбидов, фосфидов и т. д.). Особенно значительное влияние оказывает обогащение пограничных зон фосфором, снижающим работу образования межзеренных трещин, что приводит к развитию отпускной хрупкости. Легирующие элементы хром, марганец, никель повышают содержание фосфора в приграничнвгх объемах, а молибден и вольфрам, наоборот, снижают, уменьшая склонность к отпускной хрупкоети.
|
1 |
Оглавление
|