Главная > Методы анализа нелинейных динамических моделей (М. Холодниок, А. Клич, М. Кубичек, М. Марек)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Для систем с сосредоточенными параметрами пространство их состояний представляло собой конечномерное пространство Rn. В случае систем с распределенными параметрами переменные, описывающие их состояние, являются функциями пространственных переменных и, следовательно, представляют собой элементы некоторого подходящим образом выбранного бесконечномерного пространства. Целый ряд задач математической физики, гидродинамики, устойчивости конструкций, химической технологии и биотехнологии (эти примеры не исчерпывают всего перечня) можно представить в виде систем с распределенными параметрами. С математической точки зрения эти задачи чаще всего описываются интегральными уравнениями, уравнениями в частных производных или их комбинациями с обыкновенными дифференциальными уравнениями и алгебраическими соотношениями. В этой главе мы рассмотрим задачи, описываемые нелинейными дифференциальными уравнениями параболического типа с одной пространственной переменной. Вводные сведения о таких уравнениях приведены выше, в гл. 2. Читателю, который захочет ознакомиться с теорией таких уравнений более глубоко, мы рекомендуем книгу [2.32]. Несмотря на ограниченность класса проблем, описываемых такими математическими моделями, эти описания охватывают довольно большое количество технических задач (особенно из области тепло- и массообмена при химических превращениях), а также ряд биологических проблем и задач гидродинамики. Многие из описываемых здесь методов легко обобщаются на соответствующие двумерные и трехмерные задачи, однако тогда затраты машинного времени, необходимого для численного решения этих задач, существенно возрастают.

Очень часто системы с распределенными параметрами преобразуют в системы с сосредоточенными параметрами. При этом обычно используется метод прямых (см. п. 6.4.5) совместно с методом Галеркина, методом коллокаций или каким-либо разностным методом высокой точности [6.1, 6.2]. Иногда для указанного преобразования используются и так называемые спектральные методы [6.3]. При уменьшении погрешности аппроксимации (например, при выборе более мелкого шага дискретизации) возрастает размерность получающихся систем с сосредоточенными параметрами. Тем не менее для некоторых типов задач даже весьма грубая аппроксимация дает удивительно хорошие (качественно правильные) результаты [6.4].

В данной главе читатель познакомится с методами вычисления стационарных решений, нахождения зависимости этих стационарных решений от параметра и отыскания вещественных и комплексных бифуркаций. Будут также рассмотрены методы динамического моделирования (численного решения) параболических уравнений, методы нахождения периодических решений и, наконец, построение соответствующих эволюционных диаграмм.

1
Оглавление
email@scask.ru