Главная > Помехозащищенность систем радиосвязи
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.5. Помехоустойчивость систем радиосвязи с ППРЧ, двоичной ЧМ и блоковым кодированием

Системы радиосвязи с ППРЧ весьма чувствительны к наихудшим помехам. Так, выше было показано, что при действии наихудшей ответной шумовой помехи на основной канал приемника максимальная СВО на бит , а при наихудшей шумовой помехе в части полосы – . Экспоненциальный характер зависимости СВО на бит превращается в линейный, что резко снижает помехоустойчивость СРС. Рабочие характеристики СРС с ППРЧ в условиях таких помех могут быть значительно улучшены с помощью кодов, исправляющих ошибки. С этой целью оценим возможности сравнительно просто реализуемых блоковых кодов в СРС с ППРЧ и двоичной ЧМ при воздействии различных видов помех.

При использовании помехоустойчивого кодирования существенно, чтобы демодулятор СРС был в состоянии обнаруживать сильно зашумленные символы. Поэтому в качестве модели демодулятора ЧМ сигналов рассмотрим, как и ранее, типовой некогерентный (по огибающей) обнаружитель максимального правдоподобия, выход которого соединен со входом соответствующего декодера (рис.2.22, где обозначено: РУ - решающее устройство).

Рис. 2.22.

Положим далее, что информация о состоянии канала при обработке принятых сигналов не используется и на выходе демодулятора выносятся «жесткие» решения [8].

Процесс помехоустойчивого кодирования заключается в том, что наборы из  информационных символов отображаются в кодовые последовательности (комбинации, кодовые слова), состоящие из  символов, . При этом  позиций заполняются символами 1 и 0 по правилам первичного кодирования элементов (букв) алфавита источника сообщения. Оставшиеся  позиций также заполняются символами 1 и 0, но уже по соответствующим правилам кодирования. Основными параметрами блоковых кодов являются [20]: число информационных бит  и полное число бит в кодовом слове (длина кода) ; относительная скорость кода ; минимальное кодовое расстояние , равное наименьшему значению расстояния Хэмминга, представляющему собой число позиций, в которых кодовые комбинации отличаются друг от друга (например, кодовое расстояние между комбинациями 11100 и 11011 равно трем); максимальное число исправляемых ошибок на длине кодового слова , связанное с  зависимостью, , где  - целая часть числа; избыточность кода, под которой понимается параметр  определяющий долю избыточно передаваемых символов.

Так как при кодировании для исправления случайных ошибок (или пакетов ошибок) в форму сигнала вводятся соответствующие структуры во временной области, тот это может быть использовано системой РЭП для организации наихудших помех. Поэтому при применении кодов необходимо превращать сигнал во временной области в бесструктурную форму [8,20]. С этой целью, как указывалось ранее, целесообразно использовать псевдослучайное перемежение, при котором за счет случайных перестановок изменяется порядок передачи символов. На приемной стороне СРС после деперемежения символов поступающие в декодер ошибки в канале будут представляться случайными, облегчая тем самым устранение ошибок с помощью декодера.

В качестве примера рассмотрим простейшие двоичные блоковые коды, характеристики которых приведены в табл. 2.2.

Таблица 2.2 . Характеристики двоичных блоковых кодов

Вид кода

Характеристики кода

 

 (%)

Хэмминга

(7,4)

1

3

1/2

50

Голея

(23,12)

3

7

1/2

50

БЧХ (Боуза-

(15,5)

3

7

1/3

70

Чоудхури-

(15,7)

2

5

1/2

50

Хоквингема)

(15,11)

1

3

3/4

25

При применении в СРС с ППРЧ и ЧМ двоичных блоковых кодов и демодулятора с «жесткими» решениями СВО на бит (в случае статистической независимости ошибок в приеме различных символов) может быть представлена выражением [8,40]

,                   (2.78)

где  - вероятность ошибки на бит кодового слова (на канальный символ) на выходе демодулятора (на входе декодера).

Выражение для вероятности ошибки  при воздействии ответных шумовых и гармонических помех на основной канал демодулятора можно определить из (2.63) и (2.69), если учесть, что энергия канального символа , где  - энергия сигнала на длительности бита информации. В результате получим:

при воздействии ответной шумовой помехи

;                            (2.79)

при воздействии ответной гармонической помехи

.                        (2.80)

Как следует из (2.79) и (2.80), применение кодирования приводит к увеличению вероятности ошибки на канальный символ по сравнению с отсутствием кодирования, когда . Заметим также, если при применении кодирования длительность кодового слова (или скорость передачи информации) сохраняется, то длительность передаваемого канального символа уменьшается. Следовательно, полоса пропускания каждого канала должна быть увеличена. Это ведет к тому, что при заданном диапазоне перестройки частот СРС с ППРЧ число каналов, которое можно было иметь без кодирования, сокращается до

,

а мощность шумов в каналах приемного устройства СРС увеличивается

,

что приводит к уменьшению помехоустойчивости СРС по отношению к шумам системы.

Эти примеры отражают известное в теории кодирования положение о негативном влиянии на помехоустойчивость СРС увеличения избыточности [8,20]: ...если при цифровой передаче вводятся избыточные символы, а скорость передачи информации и мощность сигнала сохраняются постоянными, то энергия, приходящаяся на один канальный символ, уменьшается и вероятность ошибки увеличивается. Таким образом, применение в СРС кодирования может быть эффективным при условии, если уменьшение вероятности ошибки благодаря кодированию будет достаточным для компенсации потерь, обусловленных введением избыточности.

Рассмотрим возможности двоичных блоковых кодов (см. табл.2.2) в условиях действия наихудших помех, при которых СВО на бит имеет максимальное значение. Максимальная ошибка в приеме бита информации имеет место при вполне определенном значении отношения сигнал-помеха. Применяя уравнение  к выражениям (2.79) и (2.80), имеем:

при воздействии ответной шумовой помехи

;        (2.81)

при воздействии ответной гармонической помехи

                                          (2.82)

Таким образом, максимальная вероятность ошибки на канальный символ  (2.81) и (2.82) на входе декодера больше в  раза при шумовой помехе и – в  раза при гармонической помехе по сравнению со СВО на бит  (2.66а) и (2.72) без кодирования.

Подставляя (2.81) и (2.82) в (2.78), получим выражение максимальной СВО на бит  при применении в СРС с ППРЧ блокового кодирования при действии наихудших ответных шумовых и гармонических помех.

Для приведенных в табл.2.2 кодов на рис.2.23 и рис.2.24 изображены графики зависимости максимальной СВО на бит  как функции отношения сигнал-шум  при  для наихудшей ответной шумовой помехи и  для наихудшей ответной гармонической помехи.

Рис. 2.23.

Рис. 2.24.

При этом на рис.2.23 и рис.2.24 график 1 соответствует коду Хэмминга; график 2 - коду Голея; графики 3,4,5 - кодам БЧХ. На этих же рисунках штриховыми линиями приведены графики СВО на бит  для СРС с ППРЧ и двоичной ЧМ без кодирования  в условиях воздействия наихудшей ответной шумовой и гармонической помехи с отношением. Штрих-пунктирные кривые на рис.2.23 и рис.2.24 соответствуют СВО на бит  при отсутствии помех.

Из сравнения изображенных на рисунках графиков СВО на бит  следует, что применение простых двоичных блоковых кодов приводит к повышению помехоустойчивости двоичных СРС с ППРЧ. Так, применение кода Хэмминга (7,4) в условиях наихудшей ответной шумовой помехи позволяет получить выигрыш отношения сигнал-шум  около 8 дБ при СВО на бит  и 18 дБ при . Еще больший выигрыш можно получить, используя более помехоустойчивые коды. При применении низкоскоростного кода БЧХ (15,5) рабочая характеристика СРС с ППРЧ при наихудшей ответной шумовой помехе на уровне СВО на бит  уступает примерно 3 дБ по сравнению с рабочей характеристикой в случае отсутствия помех.

Применение кодирования с исправлением ошибок в условиях наихудших ответных гармонических помех, как и в случае ответных шумовых помех, значительно улучшает рабочие характеристики СРС с ППРЧ, повышая помехоустойчивость. Так, применение кода Голея (23,12) обеспечивает выигрыш отношения сигнал-шум  примерно на 25 дБ при СВО на бит .

Заметим, что полученный выигрыш в помехоустойчивости при применении кодов достигается в СРС с ППРЧ и случайной ЧМ, так как для такой СРС ответные помехи могут воздействовать только на основной канал приема.

Аналогичные результаты приведены в [31], где показано, что использование помехоустойчивого кодирования в СРС с медленной ППРЧ при действии наихудших ретранслированных помех позволяет значительно снизить требования к отношению сигнал- шум. Так, использование длинных блоковых кодов, таких как БЧХ (127,36), (127,64), в условиях наихудшей ответной шумовой помехи и ответной гармонической помехи дает выигрыш отношения сигнал-шум примерно на 20 дБ и 30 дБ, соответственно, по сравнению со случаем отсутствия кодирования при СВО на бит .

Применение двоичных блоковых кодов существенным образом может повысить помехоустойчивость СРС с ППРЧ и при сосредоточенных в части полосы помехах. Для примера на рис.2.25,а,б изображены графики зависимости СВО на бит как функции от части занимаемой помехой полосы  для некодированной двоичной СРС со случайной ЧМ (2.44) и для кодированной двоичной СРС со случайной ЧМ и кодом Хэмминга (7,4) (2.78) при отношении сигнал-шум  дБ.

На рис.2.25,а видно, что при сравнительно большом эквивалентном отношении сигнал-помеха  дБ и , близкой к , СВО на бит имеет значение  для СРС без кодирования. С целью уменьшения СВО на бит такие ошибки можно обрабатывать с использованием помехоустойчивого кодирования. При данном значении ошибки в приеме бита информации  простейший код Хэмминга (7,4) позволяет обеспечить СВО на бит от  до  при (см. рис.2.25,б).

Для получения СВО на бит  только за счет увеличения отношения сигнал-помеха потребовалось бы повысить отношение сигнал-помеха  с 10…15 дБ до 35…40 дБ.

Графики зависимости СВО на бит  для не кодированной двоичной СРС со случайной ЧМ (2.44) и двоичной СРС со случайной ЧМ и кодами Голея (23,12) и БЧХ (15,5), рассчитанные на основе (2.78), как функции от части занимаемой помехой полосы  (значения  даны в логарифмическом масштабе) изображены на рис.2.26,а-в, параметром СВО на бит является отношение сигнал-шум дБ. Сравнение приведенных на рис.2.26,а-в графиков СВО на бит позволяет оценить получаемый от применения кодов Голея (23,12) и БЧХ (15,5) выигрыш в помехоустойчивости СРС с ППРЧ.

Рис. 2.25.

В системах радиосвязи с ППРЧ практическое применение находят простейшие коды - коды с повторениями (дублирующие коды). Использование таких кодов в СРС с быстрой или медленной перестройкой частоты с перемежением по битам часто является эффективным способом повышения помехоустойчивости в условиях воздействия помех. Кодирование с повторением осуществляется путем передачи одних и тех же символов на различных частотах. На приемной стороне СРС при обработке таких сигналов применяют некогерентное накопление выборок символов, решение о приеме символа (1 или 0) принимается на основе мажоритарной логики по большинству одинаковых результатов.

Рис. 2.26

При применении в СРС с ППРЧ кодов с повторением в условиях действия шумовой помехи в части полосы , , ошибка в приеме произойдет только в том случае, когда все символов кода будут подавлены. Вероятность такого события определяется величиной  и фактически очень мала.

Выражение для СВО на бит при использовании кодов с повторением может быть получено из формулы (2.78) путем подстановки в нее , . Так как при дублирующих кодах (,1) число повторений , как правило, нечетное, то СВО на бит

                (2.38)

Для оценки эффективности кодов с повторением на рис.2.27 изображены графики зависимости СВО на бит  (2.83)

Как функции  при  для СРС с ППРЧ и неслучайной двоичной ЧМ при действии наихудшей шумовой помехи в части полосы.

Рис. 2.27.

Для этого случая максимальная ошибка на бит кодового слова определяется из выражения  (см. (2.39а)). Из графиков зависимости , представленных на рис.2.27, видно, что при заданном значении отношения сигнал-помеха  увеличение числа повторений  приводит к заметному уменьшению СВО на бит. Так, например, увеличение числа повторений с  до  при отношении сигнал-помеха  приводит к уменьшению СВО на бит примерно на два порядка (с  до ).

Однако повышение помехоустойчивости СРС за счет применения кодов повторения ведет к снижению скорости передачи информации. Обеспечение требуемой скорости передачи можно добиться путем уменьшения длительности частотных элементов сигнала, но при этом увеличивается ширина полосы частотных каналов и сокращается общее число частотных каналов при заданном диапазоне частот СРС. Подчеркнем тот факт, что если мощность организованных помех распределена равномерно по всему частотному диапазону СРС с ППРЧ , то применение дублирующих кодов становится нецелесообразным.

При воздействии наихудших шумовых помех в части полосы сравнительно высокую помехоустойчивость СРС с ППРЧ можно обеспечить с помощью недвоичных блоковых кодов Рида-Соломона. Использование таких кодов позволяет получить СВО на бит из [8,40]:

   (2.84)

где  - длина блока, ; ;  - максимальное расстояние, ;; - вероятность ошибки на канальный символ на выходе  -канального демодулятора (на входе декодера).

Ошибка на канальный символ  имеет место, если значение выборки огибающей в одном из каналов, в котором присутствует сигнал, не превышает значений выборок огибающей в остальных  каналах, в которых сигнал отсутствует. Из-за наличия помехи с разным уровнем мощности в каналах приемника СРС не представляется возможным получить конструктивное выражение для оценки вероятности ошибки . Для определения  в [8] предлагается воспользоваться границей объединения. Если принять, что энергия на канальный символ при -кратной ЧМ такая же, как и при двоичной ЧМ, то, используя объединенную границу ошибки, ограниченную сверху, и учитывая (2.45), получим выражение для

      (2.85)

Подставляя зависимость  (2.85) в формулу (2.84) и задаваясь характеристиками кодов и параметрами сигналов СРС и СП, можно оценить эффективность недвоичных блоковых кодов Рида-Соломона, которая характеризуется верхней границей СВО на бит

Для сравнения эффективности применения в СРС с ППРЧ и многоуровневой ЧМ блоковых кодов при воздействии наихудших помех в части полосы на рис.2.28 изображены графики зависимости СВО на бит  как функции отношения помеха-сигнал  для пяти различных кодов [8]

Рис. 2.28.

При построении графиков СВО на бит  в качестве параметров используются: число частотных каналов в СРС ; отношение сигнал-шум для некодированной двоичной ЧМ . На рис.2.28 график 1 соответствует зависимости СВО на бит без кодирования; график 2 - для кода с повторением (5,1); график 3 - для кода Голея (23,12); график 4 - для кода БЧХ (127,36); графики 5 и 6 - для недвоичных кодов Рида-Соломона с характеристиками (63,21) и (31,15),соответственно.

Из сравнения графиков зависимости СВО на бит, приведенных на рис.2.28, видно: 1) недвоичные коды Рида-Соломона наиболее предпочтительны при относительной скорости кода  и  и небольших отношениях помеха-сигнал ; ростом отношения  эффективность недвоичных кодов Рида-Соломона уменьшается, соответственно СВО на бит  увеличивается и преимущество недвоичных кодов по сравнению с двоичными кодами утрачивается; 2) наименее эффективными в широком диапазоне отношений помеха-сигнал

являются коды с повторением; 3) эффективное кодирование в СРС с ППРЧ позволяет свести до минимума преимущества наихудших помех и восстановить экспоненциальную зависимость СВО на бит.

При построении графиков зависимости СВО на бит в качестве аргумента использовалось отношение помеха-сигнал  (либо ). Этот аргумент может быть выражен через отношение энергии сигнала на бит  к спектральной плотности мощности помехи  и параметры СРС, в частности через число каналов  и произведение полосы пропускания частотного канала  при двоичной ЧМ без кодирования на длительность информационного бита .

Действительно,

              (2.86)

или в децибелах

         (2.87)

Приведенные выше примеры показывают принципиальную возможность повышения эффективности СРС с ППРЧ в условиях РЭП за счет применения простейших блоковых кодов. С целью более значительного повышения помехоустойчивости СРС с ППРЧ в условиях воздействия различного вида наихудших помех требуются более мощные коды с высокой корректирующей способностью [20,41].

 

1
Оглавление
email@scask.ru