Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 3. Относительные циклы1. Помимо определенных в предыдущем параграфе абсолютных циклов мы будем пользоваться в дальнейшем введенными в топологию Лефшецем относительными циклами. Рассмотрим все цепи, лежащие в некотором определенном подмножестве
Далее, мы говорим, что цепь
Циклы Если, например, 2. Цикл
эквивалентно, следовательно, соотношению
В соответствии с этим приведенный в качестве примера двумерный цикл
Рис. 6 3. Относительные циклы
где
А так как
что и требовалось доказать. 5. Далее, при деформации относительного цикла
Но так как
или
|
1 |
Оглавление
|