Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 39. Подвижность ионов и электропроводность растворовЭлектропроводность электролитов зависит от числа ионов в единице объема и от подвижности ионов. Подвижность ионов определенного сорта выражается скоростью их перемещения в растворителе под действием электрического поля с падением потенциала в I в на I см. Движение ионов можно обнаружить, например, проводя электролиз бесцветного раствора азотнокислого калия
Рис. 134. Прибор для демонстрации движения ионов при электролизе. В подобных опытах можно непосредственно измерить подвижность различных окрашенных (или окрашивающих индикаторы) разновидностей ионов. Однако удобнее пользоваться другими, окольными, но более точными методами измерения подвижностей. Результаты этих измерений представлены в таблице на стр. 186. Численные значения экстраполированы для бесконечно больших разведений соответствующих электролитов. (Иногда подвижностью ионов называют произведение приведенных в данной таблице чисел на заряд, равный фарадею, т. е. на 96 500 кулонов.) Как видно из таблицы, подвижности различных ионов независимо от знака и величины их зарядов имеют близкие значения (несколько десятитысячных долей сантиметра в секунду, или, что тоже, Подвижности (см. скан) доли миллиметра в минуту для поля 1 в/см). Но подвижности гидроксония
Рис. 135. Фиктивное движение ионов гидроксония при электролизе. Покажем, как при помощи таблицы подвижностей ионов вычисляется электропроводность растворов, настолько разбавленных, чтобы ионы были достаточно удалены друг от друга и вследствие этого, с одной стороны, не сцеплялись в молекулы, а с другой, — не тормозили движения друг друга своими собственными электрическими полями. Пусть в растворе содержится по падение потенциала 1 в/см; катод находится слева, анод — справа. Подвижности анионов и катионов обозначим, как в вышеприведенной таблице, через Рассуждая аналогично, для катионов мы найдем, что количество положительного электричества, ежесекундно переносимого ими через ту же площадку, но в противоположном направлении, составляет Согласно определению удельная электропроводность раствора (как и всякого проводника) есть количество электричества, переносимое через
В этой формуле
а следовательно,
Если в растворе не два вида ионов, а больше, то вообще
т. е. доля участия каждого вида ионов в электропроводности пропорциональна их концентрации, с одной стороны, и подвижности, — с другой. Например, электропроводность
Здесь мы воспользовались правом считать сильные электролиты (какова азотная кислота) в разбавленных растворах ( Формула (6) показывает, что удельная электропроводность У достаточно разбавленных растворов такая пропорциональность между удельной электропроводностью и концентрацией действительно имеется. Примером могут служить числа, приведенные в таблице. Электропроводность растворов хлористого калия при 18° С (см. скан) В более концентрированных растворах пропорциональность между концентрацией и удельной электропроводностью, требуемая найденным выше соотношением, нарушается. Наблюденная электропроводность у обычно оказывается менее вычисленной т. е. 1. Это имеет две причины. Прежде всего в случае мало разбавленных растворов нет полной диссоциации электролита; в каждый данный момент часть ионов связана в молекулы и не участвует в проведении электрического тока. Поэтому отношение — должно быть равно степени диссоциации а электролита в данном растворе. В связи с этим измерение электропроводности растворов является весьма простым, удобным и широко применяемым способом определения степени диссоциации; полученные таким способом значения а согласуются со значениями а, вычисленными для тех же растворов на основании закона Оствальда (т. I, § 121). Однако согласование с законом Оствальда имеет место только для слабых электролитов. Изменение электропроводности сильных электролитов с концентрацией происходит не так, как можно было бы ожидать на основании закона действующих масс. Здесь при высоких концентрациях уменьшается не число ионов, фактически участвующих в проведении тока, а уменьшаются Рис. 136 показывает, какая сложная зависимость существует между удельной электропроводностью растворов сильных электролитов и концентрацией, выраженной в единицах нормального раствора. Аналогичный вид имеют кривые, характеризующие зависимость электропроводности от концентрации» выраженной в процентах по весу. Эти графики показывают, что удельная электропроводность электролитов возрастает до определенной концентрации раствора и потом убывает. Например, среди растворов соляной кислоты наибольшую электропроводность имеет примерно пятинормальный раствор (около 20%
Рис. 136. Зависимость удельной электропроводности сильных электролитов от концентрации, выраженной в грамм-эквивалентах на литр. По формуле (6), которая, впрочем, справедлива только для слабых электролитов и при достаточно больших разбавлениях, отношение удельной электропроводности к грамм-эквивалентной концентрации раствора должно быть одинаковым для растворов всех концентраций. Указанное отношение, увеличенное в 1000 раз, называют эквивалентной электропроводностью:
По формуле (6) эквивалентная электропроводность должна выражаться как произведение суммы подвижностей ионов на заряд Фарадея:
Для удобства сопоставления различных электролитов и для выявления того, в какой мере свойства какого-либо электролита отличаются от свойств слабого, разбавленного, полностью диссоциированного электролита, в электрохимии результаты измерения электропроводности растворов почти всегда выражают в виде значений эквивалентной электропроводности. Из определения эквивалентной электропроводности Удельное сопротивление и электропроводность некоторых электролитов (водных растворов) при 18° С (см. скан) раствора Удельная электропроводность — это электропроводность неизменного количества раствора Эквивалентная электропроводность как сильных, так и слабых электролитов возрастает с уменьшением концентрации. На рис. 137 показан характерный для большинства электролитов вид кривых, определяющих зависимость эквивалентной электропроводности от концентрации. В таблице приведены значения эквивалентной электропроводности для некоторых электролитов. Эквивалентная электропроводность некоторых электролитов в водных растворах при 18° С (см. скан) Обратимся к вопросу о пределах применимости закона Ома к электролитам. Из теории движения тел в вязкой среде известно, что скорость установившегося (стационарного) движения в вязкой среде пропорциональна действующей на тело силе. Движущийся к электроду ион удовлетворяет тем условиям, для которых выведено это соотношение; поэтому скорость движения иона должна быть пропорциональна действующей на ион силе, т. е. произведению напряженности поля на заряд иона. Если напряжение тока а следовательно, и напряженность поля увеличатся в
Рис. 137. Изменение эквивалентной электропроводности с изменением концентрации. Таким образом, в случае элек тролитов закон Ома должен быть справедлив в тех пределах, в которых сохраняется пропорциональность между скоростью движения ионов и действующей на них электрической силой. Эти пределы очень широки, В недавнее время доказано, что отклонения от закона Ома становятся заметными лишь при напряжениях порядка 106 в/см. При этих напряжениям скорости движения ионов становятся сравнимы со скоростью движения пас сажирских поездов.
|
1 |
Оглавление
|