Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
13. ДИНАМИКА КОСМИЧЕСКИХ ЛУЧЕЙ В СОЛНЕЧНОМ ВЕТРЕ13.1. ДИНАМИКА ЗАРЯЖЕННЫХ ЧАСТИЦ В МАГНИТНЫХ ПОЛЯХТеперь мы знаем основную конфигурацию магнитного поля, которое должны преодолеть космические лучи на пути к Земле. Они летят навстречу солнечному ветру в область усиливающегося магнитного поля. Рассмотрим динамику космических лучей, находящихся в таких магнитных полях. Это сложная задача, но мы установим лишь некоторые основные результаты, которые потребуются неоднократно в нашей дискуссии по астрофизике. Начнем с рассмотрения движения в однородном постоянном магнитном поле. 13.1.1. Однородное постоянное магнитное поле. Мы уже вывели основное уравнение, которое описывает динамику частицы с зарядом
Разложим
т.е. ускорение, равное по величине
т. е.
Таким образом, движение заряженной частицы складывается из поступательного движения с постоянной скоростью и движения по окружности вокруг направления движения, т.е. траектория представляет винтовую линию с постоянным питч-углом
Рис. 13.1 Динамика заряженной частицы в однородном магнитном поле. Полезно запомнить, что гирочастота электрона равна В этом простом случае направление магнитного поля называется ведущим центром движения частицы, т.е. это среднее направление поступательного движения частицы, вокруг которого происходит вращение. В более сложных случаях можно постараться определить ведущий центр движения, так как он дает общий дрейф частицы в магнитном поле. Перепишем выражение для радиуса траектории частицы в следующем виде:
Это означает, что если частицы инжектируются с одинаковым значением В качестве примера рассмотрим протон и ядро углерода с Таблица 13.1 (см. скан) Свойства протона и ядра углерода с 13.1.2. Переменное во времени магнитное поле. При конфигурации поля, изображенной на рис. 13.1, частица движется по винтовой траектории с радиусом витка
где Сообщим малое приращение А В магнитному полю за время одного витка. Тогда
где
Чему равно изменение магнитного момента контура тока?
т.е. в нерелятивистском случае магнитный момент частицы на орбите инвариантен. Единственное условие применимости этого результата заключается в том, что поле должно медленно меняться. Рассмотрим другие способы выражения этого важного результата. Равенство
Поскольку
Этот результат объясняет явление магнитного отражения. Если частица попадает в область усиленного магнитного поля, то И наконец, поскольку
Рис. 13.2. Динамика заряженной частицы в медленно меняющемся магнитном поле. Диаграмма показывает, как ведущий центр движения частицы следует среднему направлению магнитного поля. Радиус кривизны траектории такой, что магнитный поток внутри витка остается постоянным.
т.е. частица следует вдоль ведущего центра таким образом, что магнитный поток внутри орбиты частицы сохраняется (рис. 13.2). Это выражение часто называют первым адиабатическим инвариантом движения частицы в магнитном поле. Полученные формулы более точно выводятся из принципа адиабатической инвариантности, используемого в классической динамике. Он также является лучшим способом для релятивистского обобщения этих формул. В релятивистском приближении они имеют вид
Если вы не можете вывести эти формулы самостоятельно, то прочтите следующий раздел. 13.1.3. Метод адиабатического инварианта. Этот подход требует использования лагранжева представления классической динамики. Последующий анализ заимствован из книги Джексона [2]. Джексон использует результат классической динамики, заключающийся в том, что если
Рис. 13.3. направлению магнитного поля, являются периодическими. Таким образом, интеграл действия есть
где
где
где
Но угловая гирочастота
где А — площадь, охватываемая орбитой частицы. Согласно приведенному выше правилу,
Именно этот результат и указан в уравнении (13.9), и другие его варианты немедленно следуют из соотношений Можно рассчитать поведение частиц в более сложных случаях, например, если частицы попадут в область, где существует градиент 5, или если имеется влияние гравитационного поля. Однако должно быть ясно, что отдельные частицы привязаны к силовым линиям и требуется очень большое усилие, чтобы заставить их двигаться поперек магнитного поля. Тем, кто желает более подробно познакомиться с этим вопросом, рекомендую книгу Нортропа [3]. Результаты для отдельных частиц очень сходны с выводами для вмороженного потока. Но это разные задачи, хотя примененные при их решении методы очень похожи. Дело в том, что вмораживание потока является фундаментальным магнитогидродинамическим процессом, в котором плазма рассматривается как проводящая жидкость. Расчет для отдельных частиц является микроскопическим подходом, и, чтобы объединить эти два метода в один, надо показать, что можно выводить уравнения магнитогидродинамики из микроскопических уравнений движения. Это далеко не тривиально
|
1 |
Оглавление
|