Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7. Интеграторы и дифференциаторы7.1. ИнтегрированиеИнтегрирование является одной из основных математических операций, и ее электрическая реализация означает построение схемы, в которой скорость изменения выходного напряжения пропорциональна входному сигналу. В графической интерпретации выходное напряжение оказывается пропорциональным площади под кривой входного напряжения. Те или иные разновидности интеграторов встречатюся во многих аналоговых системах. Наиболее часто они применяются в активных фильтрах, а также в системах автоматического регулирования для интегрирования сигнала ошибки. Интегратор можно рассматривать как ФНЧ первого порядка, у которого наклон АЧХ составляет -20 дБ/декада. Две простейшие схемы интеграторов представлены на рис. 7.1.
Рис. 7.1. Основные схемы интеграторов: а) простой RC-интегратор, б) интегратор с ОУ. У простого RC-интегратора, показанного на рис. 7.1 а, имеются два серьезных недостатка. Во-первых, он значительно ослабляет входной сигнал и, во-вторых, имеет высокое выходное сопротивление. В результате такая схема на практике применяется редко. Стандартный интегратор с ОУ, показанный на рис. 7.1 б, содержит входной резистор Передаточная функция интегратора:
Диапазон рабочих частот: нижияя частота: верхняя частота: где Входное сопротивление схемы:
Скорость дрейфа выходного напряжения (наихудший случай): из-за напряжения смещения
из-за утечки через сопротивление
из-за входного дифференциального сопротивления ОУ
Конечное значение выходного напряжения смещения:
Основной проблемой в аналоговых интеграторах является дрейф выходного напряжения, вызванный зарядом конденсатора Q токами утечки, входными токами смещения и входным напряжением смещения ОУ — Если интегратор является частью большей схемы, охваченной общей обратной связью, например фильтра с переменными параметрами из гл. 6, то дрейф интегратора не вызывает особых осложнений, так как компенсируется общей обратной связью. — Если интегрируемый сигнал не содержит постоянной составляющей, то в цепь обратной связи ОУ можно специально включить резистор — Если требуется интегрировать сигналы Постоянного тока, в цепь обратной связи можно ввести ключ сброса Чтобы продемонстрировать величину возможного дрейфа, предположим, что используется КМОП-ОУ с периодической коррекцией дрейфа с конденсатором обратной связи напряжения составит 0,4 мВ/час. Для снижения дрейфа необходимо тщательно продумать монтаж и конструкцию интегратора, так как, кроме входного тока смещения инвертирующего входа интегратора, на работу схемы оказывают влияние и другие токи утечки. Рекомендуется предусмотреть охранные кольца с обеих сторон платы вокруг инвертирующего входа. Плату необходимо тщательно очистить. Чтобы достичь сверхмалых токов утечки при монтаже инвертирующего входа интегратора можно использовать изолирующие фторопластовые стойки. Если для разряда конденсатора применяется аналоговый ключ, его собственный ток утечки должен быть меньше входного тока ОУ. Для уменьшения токов утечки можно использовать последовательное соединение полевых транзисторов или аналоговых ключей. Идеальный интегратор имеет частотную характеристику с постоянной крутизной спада -20 дБ/декада во всем диапазоне частот. Характеристики реальных интеграторов отличаются от идеальных, что показано на рис. 7.2 для случая малых входных сигналов. Нижняя рабочая частота определяется либо конечным коэффициентом усиления ОУ, либо конечным значением сопротивления утечки Как было отмечено, верхний предел частотной характеристики интегратора ограничивается конечной шириной полосы пропускания ОУ, который создает дополнительный полюс на АЧХ на частоте, примерно равной В случае больших входных сигналов в схеме появляются искажения, связанные с ограниченной скоростью нарастания выходного напряжения ОУ. Необходимо убедиться, что максимальная скорость изменения выходного напряжения интегратора не превышает скорости нарастания выходного напряжения ОУ, и не ограничивается величиной тока, которым
Рис. 7.2. Частотная характеристика интегратора для малых сигналов. ОУ может заряжать емкостную нагрузку. Особенно это важно в быстродействующих схемах при больших емкостях конденсатора Q. Максимальная скорость изменения выходного напряжения ограничивается величиной Если требуется большая постоянная времени интегратора (т.е.
Рис. 7.3. Применение Т-образного соединения резисторов. изолированы друг от друга, возможно, с применением защитных печатных дорожек. Сопротивления утечки и емкости, параллельные резисторам Базовую схему интегратора легко видоизменить для интегрирования суммы нескольких сигналов, подаваемых на инвертирующий вход (рис. 7.4). Наибольшее число сигналов ограничивается суммарной проводимостью резисторов, присоединенных к инвертирующему входу; соответствующее эквивалентное сопротивление
Это значение подставляется вместо Для интегрирования разности двух сигналов применяется схема, показанная на рис. 7.5. Она очень похожа на схему дифференциального усилителя, но в ней два резистора заменены на два конденсатора. В схеме требуется тщательное согласование резисторов и конденсаторов, иначе мы получим плохой коэффициент ослабления синфазного сигнала (КОСС). Значение КОСС (комплексное — прим. ред.) при рассогласовании элементов определяется выражением:
где
Рис. 7.4. Суммирующий интегратор
Рис. 7.5. Интегрирование разности двух входных сигналов.
Рис. 7.6. Дифференциальный интегратор с высоким КОСС. Если требуется дифференциальный интегратор с высоким КОСС, к суммирующему интегратору подключается еще один ОУ, действующий как инвертор (рис. 7.6). КОСС этой схемы намного выше, так как он зависит только от согласования резисторов, а не конденсаторов. Для получения неинвертирующего интегратора можно либо заземлить инвертирующий вход Исключив входной резистор (рис. 7.7 а), базовый интегратор можно превратить в интегратор тока (см. гл. 3 об усилителях заряда). Можно построить также дифференциальный интегратор тока (рис. 7.7 б). Дифференциальный интегратор тока имеет несколько серьезных недостатков, таких, как необходимость тщательного согласования конденсаторов и применение источника тока с высоким выходным сопртивлением. Эти проблемы решаются включением еще одного ОУ (рис. 7.7 в); в этом случае один ОУ действует как интегратор тока, а дополнительный — как токовое зеркало. На рис. 7.8 приведены две Схемы для сложения интеграла от входного сигнала с самим сигналом. Надо иметь в виду, что скорость дрейфа выходного напряжения в этих схемах такая же, как в базовом интеграторе. Если необходимо произвести операцию двойного интегрирования, например, выходного сигнала акселерометра для определения смещения, вместо использования двух интеграторов рассмотрим вариант применения ФНЧ второго порядка с наклоном АЧХ -40 дБ/декада. Реализующая этот вариант схема представлена на рис. 7.9.
Рис. 7.7. Интеграторы тока: а) простой с виртуальной землей, б) дифференциальный, в) дифференциальный с виртуальной землей. Схема описывается следующей передаточной функцией:
При выборе компонентов —
Рис. 7.8. Суммирование входного сигнала и его интеграла: а) неинвертирующее, б) инвертирующее.
Рис. 7.9. Применение фильтра нижних частот в качестве двойного интегратора. Отметим, что компенсация полюсов и нулей происходит на. частоте, которая обычно близка к середине рабочего диапазона частот. Для получения хорошей компенсации требуется очень точное согласование элементов. Дрейф выходного напряжения описывается выражением:
Другой способ интегрирования аналогового сигнала с использованием элементов цифровой техники показан на рис. 7.10. Здесь входной сигнал преобразуется в частоту с помощью преобразователя напряжения в частоту
Рис. 7.10. Цифро-аналоговый интегратор. ПНЧ). После этого интеграл от входного сигнала определяется путем подсчета импульсов выходной частоты ПНЧ с помощью двоичного счетчуса. Значение интеграла преобразуется в аналоговую форму с помощью ЦАП. Достоинство этой схемы состоит в том, что значение интеграла хранится не в виде заряда на конденсаторе, а в счетчике в цифровом виде и не подвержено дрейфу.
|
1 |
Оглавление
|