Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 10. Градиент электростатического потенциала. Линии сил1. Из формул (8.1)
следует, что
где
Таким образом,
Так как это равенство проекций векторов
Таким образом, напряженность электростатического поля Так как градиент потенциала направлен в сторону его возрастания и является мерой быстроты этого возрастания, то можно сказать, что напряженность электрического поля есть мера быстроты спадания потенциала, или, просто, что она равна спаду потенциала. Направление напряженности поля совпадает с направлением ортогональных траекторий эквипотенциальных поверхностей (см. приложение, § 2). Поэтому эти ортогональные траектории (линии градиента) совпадают с линиями электрических сил, или силовыми линиями. 2. Электрической силовой линией называется линия, касательные к которой в каждой ее точке совпадают по направлению с вектором напряженности электрического поля Чтобы получить аналитическое уравнение силовых линий, достаточно учесть, что элемент длины
Уравнения (10.3) эквивалентны системе двух обыкновенных дифференциальных уравнений, например Физики XIX в. долгое время стремились объяснить электромагнитные явления деформациями и вихревыми движениями особой всепроникающей гипотетической среды — эфира; они полагали, что силовые линии совпадают с осями деформации (или осями кручения), испытываемой эфиром в электрическом поле. Однако к началу XX в. выяснилась полная несостоятельность механистической теории эфира, и в настоящее время, пользуясь понятием «силовых линий», нужно помнить, что понятие это имеет условно-вспомогательное значение и что силовые линии служат лишь для графического изображения направления электрического вектора. 3. Впрочем, подобно тому как при надлежащем способе черчения эквипотенциальных поверхностей густота их расположения может служить мерой градиента потенциала, т. е. мерой напряженности поля, подобно этому и силовыми линиями можно воспользоваться для той же цели. Нанести на чертеж все силовые линии, проходящие через каждую точку поля и заполняющие собой все занимаемое полем пространство, конечно, невозможно. Обыкновенно силовые линии чертятся с таким расчетом, чтобы в любом участке поля число линий, пересекающих перпендикулярную к ним площадку единичной поверхности, было по возможности пропорционально напряженности поля на этой площадке. В таком случае густота расположения силовых линий может служить мерой напряженности поля. При этом число линий, пересекающих произвольный элемент поверхности Отметим, что при указанном способе черчения силовых линий общее число этих линий, пересекающих любую замкнутую поверхность В частности, число силовых линий, пересекающих любую, не содержащую зарядов, замкнутую поверхность, равно нулю. Иными словами, число (положительное) линий, выходящих из ограниченного поверхностью объема, равно (отрицательному) числу линий, входящих в него. Отсюда следует, что в свободных от зарядов участках поля силовые линии не могут ни начинаться, ни оканчиваться. С другой стороны, линии эти не могут также быть замкнутыми. В противном случае, линейный интеграл Таким образом, для получения правильной картины поля достаточно, очевидно, от каждого элемента заряда провести число линий, пропорциональное величине этого заряда. Для незамкнутых линий, впрочем, существует, помимо перечисленных, еще третья возможность: они могут при безграничном продолжении, не пересекаясь и не замыкаясь, всюду плотно заполнять некоторый ограниченный участок пространства. С такого рода магнитными силовыми линиями мы познакомимся в гл. IV. Однако для силовых линий электростатического поля эта возможность исключена, ибо линия, заполняющая некоторый участок пространства, должна при достаточном продолжении как угодно близко подходить к ранее пройденным ею точкам. Если Задача 9. Показать, исходя из (8.10), что напряженность поля диполя момента рис. 15, равна
и что в сферической системе координат
Таким образом, угол
На одинаковых расстояниях от диполя поле вдоль его оси
Рис. 15
|
1 |
Оглавление
|