Главная > KУPC ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ (Т. Леви-Чивита и У. Амальди)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

21. Относительный характер живой силы, уже отмеченный в п. 6 , приводит к рассмотрению некоторого особого класса систем отсчета для любой материальной системы.

Предположим, что движение некоторой системы S определено относительно осей Qξη, которые для простоты назовем неподвижными, и поставим себе задачу определить такую систему отсчета, относительно которой живая сила системы будет наименьшей.

Заметим теперь же, что если некоторый триэдр обладает этим свойством, то то же будет иметь место и для всякого другого триэдра, неподвижного относительно первого, так что все сводится к выяснению того, каким должно быть движение искомой системы отсчета Oxyz относительно неподвижной системы Qฑү. Для этой цели достаточно указать характеристические векторы v0=daO/dt и ω движения осей Oxyz, где da/dt обозначает (абсолютно) производную, относящуюся к осям Qξi.

Теорема Кёнига позволяет непосредственно заключить, что должно быть
daOdt=daGdt,

где G, как обычно, обозначает центр тяжести системы. Действительно, в силу этой теоремы живая сила системы S относительно системы осей Oxyz состоит из живой силы относительно центра тяжести, увеличенной на существенно положительное слагаемое
12m[daOGdt]2,

где m обозначает полную массу системы S, так что искомая система отсчета должна иметь начало O неподвижным относительно центра тяжести G, или, несколько точнее, относительно системы Gξ; с началом в G и с неизменными направлениями осей.

Условимся называть абсолютными кинематические величины, которые относятся к этим последним осям, и относительными кинематические величины, относящиеся к неизвестной системе осей, обладающей указанным выше свойством.

Относительную скорость какой нибудь точки Pi(i=1,2,,N) системы можно представить в виде viwi, где vi есть аналогичная абсолютная скорость, которую мы можем считать известной, а
wi=ω×GPi(i=1,2,,N)

есть соответствующая переносная скорость. Отсюда для относительной живой силы находим выражение
T=12i=1Nmi(viwi)2.

Далее, из анализа известно, что для того, чтобы T, рассматриваемая как функция угловой скорости ω (или соответствующих абсолютных ее составляющих π,%,p ), имела минимум- при данном значении ω, необходимо, чтобы при любом бесконечно малом приращении δω вектора ω исчезала соответствующая вариация T.

Так как T зависит от ω только через посредство wi, то эта вариация определяется равенством
δT=i=1Nmi(viwi)δwi,

где в силу соотношения (39)
δwi=δω×GPi(i=1,2,,N);

поэтому, подставляя эти выражения вместо δwi и переставляя множители смешанного произведения, получим
δT=δωi=1NGP×mi(viwi).

Полученная вариация δT будет равна нулю при любом значении
в том и только в том случае, если выполняется равенство
i=1NGPi×mi(viwi)=0.

Отсюда заключаем, что искомая система осей должна быть такой, чтобы в движении по отношению к ней кинетический момент материальной системы относительно центра тяжести был равен ну. ι1).

Следует заметить, что равенство (40) в силу соотношения (39) приводит к трем линейным уравнениям относительно трех неизвестных проекций π,χ,p угловой скорости ω, которые определяются из этих уравнений однозначно. Это можно видеть и не производа вычислений, если мысленно спроектировать уравнение (40) на. главныө оси инерции Gξη, проходящие через центр тяжести.

1
Оглавление
email@scask.ru