Главная > Цифровая обработка изображений. Книга 1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

4.1. ПРОЦЕССЫ ИДЕАЛЬНОЙ ДИСКРЕТИЗАЦИИ И ВОССТАНОВЛЕНИЯ НЕПРЕРЫВНЫХ ИЗОБРАЖЕНИЙ

При разработке и анализе систем дискретизации и восстановления непрерывных изображений обрабатываемые изображения обычно принято рассматривать как детерминированные поля. Однако в некоторых случаях удобнее предполагать, что входной сигнал системы обработки изображений (особенно шумового происхождения) является реализацией двумерного случайного процесса. Ниже при анализе методов дискретизации и восстановления непрерывных изображений используются оба этих подхода.

4.1.1. ДИСКРЕТИЗАЦИЯ ДЕТЕРМИНИРОВАННЫХ ИЗОБРАЖЕНИЙ

Пусть функция  описывает исходное непрерывное изображение бесконечных размеров, представляя распределение яркости, оптической плотности или какого-либо другого параметра реального изображения. В идеальной системе дискретизации изображений пространственные отсчеты исходного изображения получаются фактически путем перемножения этой функции с пространственно-дискретизирующей функцией

     (4.1.1)

состоящей из бесконечного числа дельта-функций, заданных в узлах решетки с шагом , как показано на рис. 4.1.1. Тогда дискретизованное изображение описывается соотношением

     (4.1.2)

в котором учитывается, что функцию  можно внести под знак суммирования и задать ее значения только в точках отсчета . Для анализа процесса дискретизации удобно использовать спектр  получаемый в результате непрерывного двумерного преобразования Фурье дискретизованного изображения

     (4.1.3)

 

Рис. 4.1.1. Набор дельта-функций, осуществляющих дискретизацию изображений.

Согласно теореме о спектре свертки, спектр дискретизованного изображения можно представить в виде свертки спектра исходного изображения  и спектра дискретизирующей функции , т. е.

     (4.1.4)

Двумерное преобразование Фурье дискретизирующей функции дает в результате бесконечный набор дельта-функций в плоскости пространственных частот с шагом  и  [4, стр. 22], т.е.

     (4.1.5)

Будем предполагать, что спектр исходного изображения ограничен по ширине так, что  при  и . Вычисляя свертку согласно равенству (4.1.4), найдем

     (4.1.6)

Меняя порядок операций суммирования и интегрирования и учитывая основное свойство дельта-функций, получаем выражение для спектра дискретизованного изображения

     (4.1.7)

Как показано на рис. 4.1.2, спектр дискретизованного изображения получается путем бесконечного повторения спектра исходного изображения со сдвигом на величины, кратные . Следует отметить, что если  и  выбраны слишком большими по сравнению с шириной спектра , то соседние спектры будут перекрываться друг с другом.

Из отсчетов функции  можно получить непрерывное изображение путем линейной пространственной интерполяции или с помощью линейной пространственной фильтрации дискретизованного изображения. Пусть  есть импульсный отклик интерполирующего фильтра, а  - его частотная характеристика. Восстановленное изображение получается как свертка последовательности отсчетов с импульсным откликом восстанавливающего фильтра. Таким образом, восстановленное непрерывное изображение описывается соотношением

   (4.1.8)

Подставляя  из равенства (4.1.2) и вычисляя свертку, получаем

     (4.1.9)

Отсюда видно, что импульсный отклик  выполняет роль двумерной функции, интерполирующей отсчеты на всю плоскость. Пространственно-частотный спектр изображения, восстановленного согласно равенству (4.1.8), есть произведение частотной характеристики восстанавливающего фильтра со спектром дискретизованного изображения, т. е.

                                                                    (4.1.10)

С учетом равенства (4.1.7) получаем

     (4.1.11)

Рис. 4.1.2. Типичный спектр дискретизованного изображения: а - исходное изображение; б - дискретизованное изображение.

Из этого выражения видно, что если спектры не перекрываются, а множитель  подавляет все сдвинутые спектры при , то спектр восстановленного непрерывного изображения будет совпадать со спектром исходного изображения и поэтому изображения также будут одинаковыми. Для изображений с ограниченной шириной спектра первое условие выполняется, если интервал дискретизации выбран так, что прямоугольная область, ограниченная верхними граничными частотами спектра изображения , лежит внутри прямоугольной области, определяемой половинами частот дискретизации . Следовательно, должны выполняться неравенства

     (4.1.12а)

или

.   (4.1.12б)

Это означает, что шаг дискретизации не должен превышать половины периода пространственной гармоники, соответствующей самым мелким деталям изображения. Это условие эквивалентно теореме о дискретизации одномерных сигналов, в которой сформулировано требование, что частота дискретизации должна хотя бы вдвое превышать наивысшую частоту спектра сигнала. Если соотношения (4.1.12) выполняются со знаками равенства, то изображение дискретизуется с найквистовской (в отечественной литературе это положение известно как теорема Котельникова) частотой; если  и  меньше или больше, чем требуется по критерию Найквиста, то говорят, что изображение дискретизуется с избыточной или недостаточной частотой.

В тех случаях, когда пространственная частота дискретизации изображения достаточна для устранения наложения спектров в дискретизованном изображении, исходное изображение можно абсолютно точно восстановить путем пространственной фильтрации отсчетов с помощью соответствующего фильтра. Так, например, фильтр, частотная характеристика которого приведена на рис. 4.1.3 и описывается выражениями

 при  и                     (4.1.13а)

 в остальных случаях,                  (4.1.13б)

где  - масштабная постоянная, удовлетворяет условию точного восстановления, если  и . Функция рассеяния точки (или импульсный отклик) данного восстанавливающего фильтра имеет вид

     (4.1.14)

При использовании этого фильтра изображение восстанавливается с помощью бесконечной суммы функций вида . Другим фильтром, пригодным для восстановления изображений, является «круговой» фильтр с частотной характеристикой (рис. 4.1.3, б)

 при      (4.1.15а)

 в остальных случаях,     4.1.15б)

Рис. 4.1.3. Фильтры для восстановления дискретизованных изображений: а - прямоугольный; б - круговой.

если  Импульсный отклик такого фильтра имеет вид                                           

     (4.1.16)

где  - бесселева функция первого порядка. Существует много восстанавливающих фильтров (или соответствующих интерполяционных функций), которые можно использовать для восстановления изображений. Однако на практике в цифровой системе воспроизведения изображений часто бывает сложно реализовать оптимальный восстанавливающий фильтр. Одна из практических трудностей состоит в том, что обычные интерполяционные функции [например, заданные равенствами (4.1.14) и (4.1.16)] принимают не только положительные, но и отрицательные значения, хотя функции, описывающие восстановленные изображения, строго положительны. Такие интерполяционные функции нельзя сформировать оптическими средствами и, следовательно, не удается восстановить изображения путем последовательного их взвешивания и сложения. Ричардс [6] нашел семейство интерполяционных функций, которые можно применить для последовательной оптической интерполяции, поскольку их большие значения положительны.

 

1
Оглавление
email@scask.ru