Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 14. Работа и мощность постоянного токаПри прохождении тока, т. е. при упорядоченном движении носителей заряда в проводнике, действующее на них электрическое поле, определяемое приложенным к концам проводника напряжением, совершает работу. Эту работу обычно называют работой электрического тока. Работа сил электрического поля при перемещении носителей заряда равна произведению переносимого заряда
При постоянном токе
Мощность Р электрического тока, определяемая работой, совершаемой за единицу времени, равна
Электрический ток, совершая работу, может раскалять нить электролампы, вращать якорь электродвигателя, плавить металлы, вызывать химические превращения, заряжать аккумулятор и т. д. Во всех этих случаях работа тока определяет меру превращения электрической энергии в другие формы — внутреннюю энергию теплового движения, механическую энергию и т. д. Работа электрического тока измеряется в тех же единицах, что и механическая работа. Это
Мощность измеряется в ваттах: Закон Джоуля-Ленца. Прохождение электрического тока через проводник, обладающий сопротивлением, всеща сопровождается выделением теплоты. Количество выделившейся за время
В случае однородного участка, коща
В однородном участке цепи, например в резисторе, работа тока сводится только к выделению теплоты. В качестве примера рассмотрим какой-нибудь электронагревательный прибор, отдающий выделяющуюся теплоту в окружающую среду. Скорость теплопередачи, т. е. количества теплоты, отдаваемой нагретым элементом в единицу времени, пропорциональна разности температур
Коэффициент к зависит от свойств тела (площади поверхности, размеров и формы). Будем считать его значение известным. Выделяющуюся джоулеву теплоту можно подсчитать по любой из формул (5). Поскольку обычно нагревательный прибор включается в сеть с заданным напряжением, то удобно воспользоваться выражением
Сразу после включения выделяющаяся джоулева теплота превосходит отдаваемую окружающей среде, так как происходит нагревание самого прибора. В конце концов устанавливается такая его температура Т, при которой Р и Если сопротивление нагреваемого током элемента не зависит от температуры, то, приравнивая значения Р и
Однако в действительности, как правило, сопротивление зависит от температуры. Для металлической проволоки эту зависимость можно считать линейной (см. § 10):
где с хорошей точностью под
Имеющий физический смысл корень этого уравнения можно представить в следующем виде:
В условиях, когда член в подкоренном выражении мал по сравнению с единицей и можно воспользоваться приближенной формулой В другом предельном случае больших
— разность температур теперь пропорциональна не квадрату, а первой степени приложенного напряжения. В неоднородных участках цепи, где ток определяется формулой Зарядка аккумулятора. В качестве примера энергетических превращений в неоднородной цепи рассмотрим зарядку аккумулятора. Не вдаваясь в детали происходящих в аккумуляторе процессов, а только учитывая, что при зарядке все химические процессы внутри него идут «вспять», легко сообразить, что ток идет в направлении, противоположном току при разрядке, когда аккумулятор является источником питания для внешней цепи. Поэтому аккумулятор включается в цепь так, как показано на рис. 86, а ток в цепи идет в направлении, указанном стрелкой. Так как ЭДС аккумулятора (сумма скачков потенциала внутри него) понижает потенциал в цепи в направлении протекания тока, то, в соответствии с законом Ома для неоднородного участка, ток в цепи равен
Рис. 86. Схема включения аккумулятора на зарядку В этой формуле Работа, совершаемая зарядной станцией (т. е. внешним источником напряжения включая внутреннее сопротивление аккумулятора, в единицу времени выделяется джоулева теплота, равная
где Рзар — мощность, идущая непосредственно на зарядку аккумулятора. Подставляя в (7) выражение для силы тока (6), получаем
Таким образом, при зарядке аккумулятор в единицу времени запасает энергию, равную 14. Разумеется, этого результата можно было ожидать из элементарных соображений: ведь процессы в аккумуляторе считаются обратимыми, а при разрядке аккумулятор развивает мощность Обратим внимание, что, считая известными выражения для полной работы тока, для джоулевой теплоты и для работы зарядки аккумулятора, можно с помощью закона сохранения энергии получить выражение (6) для тока в цепи. Для этого нужно просто подставить в Работа источника тока. Источник тока — это устройство, поддерживающее разность потенциалов на концах подключенной к нему электрической цепи. Это происходит благодаря действию сторонних сил — сил неэлектростатической природы. Какие энергетические превращения при этом происходят? Как мы видели, ЭДС
Домножим обе части этого равенства на заряд Электрический ток совершает работу за счет действия источника, т. е. сторонних сил. По закону сохранения энергии работа тока в цепи равна работе, совершаемой за это же время источником тока, т. е. работе действующих в нем сторонних сил. Определение ЭДС. Итак, работа источника тока при перемещении по цепи заряда при перемещении по цепи заряда
Поскольку работа источника тока равна
Мощность и КПД источника тока. Выясним, каким должно быть сопротивление нагрузки Ток в цепи (рис. 87) определяется законом Ома:
Коэффициент полезного действия
Исследуем полученные выражения. Полная мощность Р и ток в цепи I различаются постоянным множителем
Рис. 87. К исследованию условий работы источника тока
Рис. 88. Зависимость мощности и КПД источника тока от сопротивления нагрузки Максимальным значение этих величин будет при равного половине мощности Р при этой нагрузке. Для того чтобы убедиться, что при равенстве сопротивления нагрузки и внутреннего сопротивления источника тока полезная мощность максимальна, преобразуем правую часть выражения (12) следующим образом:
Полезная мощность будет максимальной, когда знаменатель правой части выражения (14) минимален. Преобразуем знаменатель:
Функция (15) достигает минимума тогда, когда выражение в скобках равно нулю, т. е. при При неограниченном увеличении сопротивления нагрузки Из рис. 87 видно, что требования получения максимального тока в цепи, максимальной полезной мощности и максимального КПД противоречивы. Для получения возможно большего тока сопротивление нагрузки должно быть малым по сравнению с внутренним сопротивлением источника, но при этом близки к нулю полезная мощность и КПД: почти вся совершаемая источником тока работа идет на выделение теплоты на внутреннем сопротивлении Любую полезную мощность • Работа каких сил имеется в виду, когда говорят о работе, совершаемой электрическим током? • В каких случаях работа электрического тока • Для зарядки аккумулятора с ЭДС его включили в сеть с постоянным напряжением • Каким образом работа сторонних сил связана с ЭДС источника тока? Аргументируйте свой ответ. • Какой должна быть нагрузка, чтобы источник тока развивал максимальную полезную мощность? Каким при этом будет его КПД? • Почему условия получения максимальной полезной мощности и максимального КПД от данного источника тока противоречат друг другу? • Покажите, что два значения сопротивления нагрузки и • Постройте графики зависимости мощности источника тока, полезной мощности и КПД от силы тока I в цепи. Поле сторонних сил. Работа, совершаемая электрическим током при прохождении заряда по всей цепи, равна работе действующих в источнике сторонних сил. Поэтому ЭДС можно выразить через эти силы. Введем новую величину Естор, которую назовем напряженностью поля сторонних сил. Это сила, действующая на единичный положительный заряд, обусловлена любыми причинами, кроме электростатического поля. Тогда полная сила, действующая на заряд, будет складываться из электростатической силы и сторонней силы:
Рассмотрим замкнутую цепь и рассчитаем полную работу, совершаемую всеми действующими на заряд силами при его перемещении по всей цепи. Работа электростатических сил на замкнутом контуре равна нулю, так как эти силы — потенциальные. Поэтому полная работа на замкнутом контуре равна работе только сторонних сил. Именно эта работа и определяет ЭДС источника тока. Обратим внимание на кажущееся противоречие. Работа тока — это по определению работа сил электрического поля. В то же время, как мы видели, работа тока во всей цепи равна работе источника, т. е. работе сторонних сил. Но как мы только что выяснили, работа электростатического поля равна нулю. Как все это согласовать? Дело в том, что, говоря о работе электрического тока, мы имели в виду работу электрических сил не на всем замкнутом пути, а только на тех участках цепи, где заряды движутся под действием электрических сил. Мы не включали работу электрических сил в местах скачков потенциала (где и действуют сторонние силы), т. е. в местах, где электрическое поле направлено противоположно движению положительных зарядов. Именно в этих местах внутри источника тока движение зарядов против сил электрического поля обусловлено действием сторонних сил. Если учесть работу электрических сил и в этих местах, то полная их работа действительно будет равна нулю. Здесь можно привести следующую механическую аналогию. Лыжник спускается с горы и, сделав круг, возвращается к ее подножию, а затем с помощью подъемника снова поднимается на вершину. Аналогом потенциального электростатического поля здесь является поле силы тяжести. Роль сторонних сил играют силы, поднимающие его наверх в подъемнике. Очевидно, что полная работа силы тяжести на всем замкнутом пути равна нулю. Однако в данном случае она не представляет интереса. Важна лишь та работа сил тяжести, что совершается при движении лыжника от вершины горы до ее основания. Эта работа как раз и равна работе «сторонних» сил, действующих на лыжника в подъемнике. Работа и теплота в произвольной цепи. В неоднородном участке цепи, содержащем источник с ЭДС и внутренним сопротивлением
Выделяющаяся теплота равна сумме работы тока и работы источника:
Подчеркнем, что эти формулы справедливы во всех случаях, независимо от того, идет ли ток через источник в «естественном» направлении, когда он отдает энергию во внешнюю цепь, или в противоположном, как это бывает при зарядке аккумулятора, когда он потребляет энергию (в этом случае I и Ч имеют противоположные знаки и Лист Как связаны между собой работа сторонних сил и работа сил электрического поля при переносе заряда вдоль всей замкнутой цепи? Поясните аналогию между работой электрических и сторонних сил и работой силы тяжести и «подъемной» силы при катании лыжника на горе с подъемником.
|
1 |
Оглавление
|