Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 23. Работа и мощность переменного тока. Передача электроэнергииКак мы видели, в цепи синусоидального переменного тока, вообще говоря, возникает сдвиг по фазе между приложенным напряжением и током:
Мгновенная мощность. Сдвиг фаз
Отсюда получается следующее выражение для мгновенной мощности тока:
Подставив сюда значения
Воспользовавшись тригонометрическим тождеством
перепишем (4) в следующем виде:
Выражение для мгновенной мощности (5) состоит из двух слагаемых: одно из них не зависит от времени, а второе осциллирует с удвоенной частотой Средняя мощность. Действующие значения. Если интересоваться работой переменного тока за промежуток времени, сравнимый с периодом
Часто эту формулу записывают в виде
где I и
Использование действующих значений вместо амплитудных удобно потому, что в нагрузке с чисто активным сопротивлением, где Потери в линиях передачи. Потребителю обычно подается напряжение определенной величины малых значениях Если
Для уменьшения потерь следует добиваться как можно меньшего сдвига фазы между током и напряжением в нагрузке. Большинство современных потребителей электрической энергии синусоидального тока представляют собой нагрузки индуктивного характера, токи в которых отстают по фазе от напряжения источника питания. Эквивалентную схему такого потребителя можно изобразить в виде последовательно соединенных активного сопротивления
Рис. 143. Эквивалентная схема потребителя с индуктивной нагрузкой (а) и включение вспомогательного конденсатора для увеличения
Рис. 144. Векторные диаграммы для цепей, изображенных на рис. 143 Из этой формулы видно, что при напряжении Уменьшение потерь. Как же добиться того, чтобы сдвиг фаз между напряжением и током в цепи уменьшился? Легко сообразить, что для этого можно подсоединить параллельно нагрузке вспомогательный конденсатор (рис. 1436). Векторная диаграмма в этом случае будет иметь вид, изображенный на рис. 144б. Векторы, изображающие приложенное напряжение Из рис. 1446 видно, что длина вектора
Но
Таким образом, существует достаточно простой и эффективный способ снижения потерь в линиях передачи энергии переменного тока, связанных с реактивным характером сопротивления нагрузки: подключение конденсатора к индуктивной нагрузке позволяет получить равное нулю значение сдвига фаз 9. Высоковольтные линии передачи. Но даже в том случае, когда сопротивление нагрузки является чисто активным и сдвиг фаз между напряжением и током отсутствует, т. е. Трансформатор. Для преобразования напряжения на электростанциях и у потребителей используются трансформаторы (рис. 145). Трансформатор имеет сердечник замкнутой формы из магнитомягкого (легко перемагничиваемого) материала, который несет на себе две обмотки: первичную и вторичную. Концы первичной обмотки (вход трансформатора) подключают к сети переменного тока, а концы вторичной обмотки (выход) — к потребителю электрической энергии. ЭДС электромагнитной индукции, возникающая во вторичной обмотке, пропорциональна числу витков в ней.
Рис. 145. Трансформатор: общий вид, схематическое устройство и условное изображение на схемах Поэтому, изменяя это число витков, можно изменять в широких пределах напряжение на выходе трансформатора. Рассмотрим принцип действия трансформатора. Пусть сначала вторичная обмотка трансформатора разомкнута, а на первичную подается переменное синусоидальное напряжение. Это режим холостого хода. Как и всякую катушку индуктивности, первичную обмотку трансформатора можно рассматривать как последовательно соединенные индуктивность
Разумеется, непосредственно измерить Напряжение на индуктивности
Если весь магнитный поток, создаваемый током первичной обмотки, целиком, т. е. без рассеяния, пронизывает вторичную обмотку, то индуцируемая в каждом витке вторичной обмотки ЭДС будет такой же, как и в каждом витке первичной обмотки. Поэтому отношение электродвижущих сил в первичной и вторичной обмотках равно отношению чисел витков:
На выходе разомкнутой вторичной обмотки существует напряжение, равное индуцируемой в ней ЭДС:
Подставляя сюда из (15) и учитывая (14), получаем
Режим холостого хода. Таким образом, значение напряжения на Трансформатор под нагрузкой. При замыкании вторичной цепи трансформатора на некоторую нагрузку во вторичной обмотке появляется ток. Создаваемый этим током магнитный поток направлен так, что, согласно закону Ленца, препятствует изменению магнитного потока, создаваемого током в первичной обмотке. Если бы при этом ток в первичной обмотке остался неизменным, то это привело бы к уменьшению магнитного потока. Значит, включение нагрузки во вторичную цепь эквивалентно уменьшению индуктивности первичной цепи. Но уменьшение индуктивного сопротивления немедленно приводит к увеличению тока в первичной обмотке, к уменьшению сдвига по фазе между напряжением и током и, следовательно, к увеличению потребляемой от внешней цепи мощности. Таким образом, если на холостом ходу трансформатор представляет собой почти чисто индуктивное сопротивление, то по мере увеличения нагрузки трансформатора, т. е. тока во вторичной цепи, характер сопротивления первичной обмотки трансформатора становится ближе к активному. Если потери энергии в самом трансформаторе малы, то на основании закона сохранения энергии потребляемая трансформатором мощность целиком передается нагрузке. Тогда с помощью (6) можно написать
где Приведенное выше рассмотрение работы трансформатора относится к идеализированному случаю трансформатора без потерь. В реальном трансформаторе всегда имеются потери, связанные с выделением джоулевой теплоты в обмотках, с токами Фуко, с необратимыми явлениями при перемагничивании сердечника и с рассеянием магнитного потока. Но в современных трансформаторах суммарные потери не превышают нескольких процентов от передаваемой мощности. Коэффициент полезного действия трансформаторов очень высок и лежит в пределах 95-99,5%. Выпрямление переменного тока. Для многих практических применений необходимо преобразовать переменный синусоидальный ток в ток одного направления. Этой цели служат выпрямители, действие которых основано на односторонней проводимости ламповых и полупроводниковых диодов. Понять действие выпрямителя можно, не вникая в физическую природу самого механизма односторонней проводимости. Простейшая схема выпрямителя приведена на рис. 146а. Это однополупериодный выпрямитель, в котором ток через нагрузку
Рис. 146. Схемы выпрямителей: однополупериодного (а), двухполупериодного (б) и с удвоением напряжения (в) В мостиковой схеме выпрямителя, показанной на рис. 1466, ток через нагрузку идет в одном и том же направлении в течение обеих половин каждого периода. Но в таком двухполупериодном выпрямителе ток все-таки тоже пульсирует. Для сглаживания этих пульсаций используют так называемые электрические фильтры, если требуется не только получить ток одного направления, но и постоянное напряжение. В приведенных на рис. 146 а,б схемах максимальное значение напряжения на нагрузке (при идеальных диодах) равно амплитудному значению приложенного синусоидального напряжения. В показанной на рис. 146 в схеме выпрямителя напряжение на нагрузке практически вдвое больше амплитудного значения приложенного напряжения, если время разрядки конденсаторов через сопротивление нагрузки Задачи1. Активное сопротивление Решение. Напряжение
На разомкнутой вторичной обмотке получаем
Выходное напряжение оказывается всего на 0,5% меньше значения 440 В, которое соответствовало бы идеализированному случаю чисто индуктивного сопротивления первичной обмотки. 2. Последовательно с электрокипятильником, включенным в осветительную сеть с частотой Решение. По условию задачи потребляемая кипятильником мощность после подключения дросселя уменьшилась вдвое. Значит, напряжение на нем уменьшилось в
• При каких условиях выражение (2) можно использовать для расчета работы переменного тока? Ведь оно, строго говоря, было получено для постоянного тока. • Нарисуйте примерный график зависимости от времени мгновенной мощности в цепи переменного тока для случаев • В каких случаях при расчете работы переменного тока можно пользоваться выражением (6) для средней мощности, а не выражением (5) для мгновенной мощности? • Каким образом можно уменьшить тепловые потери в линиях электропередачи, изменяя характер сопротивления нагрузки? Почему в сетях переменного тока потребитель энергии должен обладать практически активным в целом сопротивлением? • В чем преимущество использования линий высокого напряжения для передачи электроэнергии? • Какую роль в трансформаторе играет сердечник из материала с высокой магнитной проницаемостью? Почему железный сердечник трансформатора собирают из отдельных изолированных пластин? • Из формулы (17) следует, что коэффициент трансформации напряжения определяется отношением чисел витков • Можно ли включать трансформатор в сеть постоянного тока? • Нарисуйте графики зависимости силы тока от времени в нагрузке выпрямителей, схемы которых показаны на рис. 146 а,б. • Объясните, почему в схеме выпрямителя на рис. 146 в происходит удвоение напряжения на нагрузке. Предложите схему выпрямителя, в котором на нагрузке происходило бы утроение напряжения.
|
1 |
Оглавление
|