Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 31. Дифракция светаНаряду с интерференцией другим примером общего для всех волновых процессов явления может служить дифракция — огибание волнами препятствий. Для световых волн дифракция проявляется в отклонении от прямолинейного распространения и загибании света в область геометрической тени. Характерной особенностью дифракционных явлений в оптике оказывается то, что здесь, как правило, длина волны света почти всегда много меньше размеров преград на пути световых волн. Поэтому наблюдать дифракцию света можно только на достаточно больших расстояниях от преграды. Проявление дифракции состоит в том, что распределение освещенности отличается от простой картины, предсказываемой геометрической оптикой на основе прямолинейного распространения света. Принцип Гюйгенса—Френеля. Строгий расчет дифракционной картины представляет собой очень сложную математическую задачу. Но в некоторых практически важных случаях достаточно
Рис. 199. К расчету дифракции на основе принципа Гюйгенса-Френеля хорошее приближение дает упрощенный подход, основанный на использовании принципа Гюйгенса—Френеля. Пусть поверхность Для того чтобы определить вызванные волной колебания в некоторой точке Р, нужно, по Френелю, определить колебания, вызываемые в этой точке отдельными вторичными волнами, приходящими в нее от отдельных элементов поверхности Зоны Френеля. Проиллюстрируем применение принципа Гюйгенса—Френеля на следующем примере. Пусть на непрозрачную преграду с круглым отверстием падает слева плоская монохроматическая волна (рис. 200). Такую волну можно получить, например, от точечного источника монохроматического света, удаленного на бесконечность или помещенного в фокус собирающей линзы большого диаметра.
Рис. 200. Падение плоской монохроматической волны на преграду с круглым отверстием
Рис. 201. Построение зон Френеля Будем интересоваться освещенностью экрана в точке Р, находящейся на оси симметрии. Для учета интерференции вторичных волн Френель предложил мысленно разбить волновую поверхность падающей волны в месте расположения преграды на кольцевые зоны (зоны Френеля) по следующему правилу: расстояния от краев соседних зон до точки Р (рис. 201) должны отличаться на половину длины волны, т. е.
Если смотреть на волновую поверхность из точки Р, то зоны Френеля будут выглядеть так, как показано на рис. 202. Из рис. 201 легко найти радиусы зон Френеля:
Видно, что радиус
Рис. 202. Зоны Френеля Дифракция Френеля на круглом отверстии. Предположим, что отверстие в преграде представляет собой диафрагму, диаметр которой можно изменять. Пусть сначала радиус отверстия много меньше радиуса первой зоны Френеля. Тогда можно считать, что колебания от всех точек волновой поверхности в этом маленьком отверстии приходят в точку Р практически в одинаковой фазе. Изобразим колебание поля в точке Р, вызванное этой вторичной волной, с помощью векторной диаграммы (рис. 203а). Этому колебанию на ней сопоставляется вектор
Рис. 203. Расчет амплитуды результирующего колебания в точке Р с помощью векторных диаграмм: а — в отверстии укладывается одна зона Френеля; Результирующее колебание в точке Р, создаваемое волной, которая прошла через круглое отверстие, совпадающее с первой зоной Френеля, изображается вектором Таким образом, освещенность экрана в точке Р, пропорциональная квадрату амплитуды результирующего колебания, будет по мере увеличения отверстия круглой диафрагмы меняться немонотонно. Пока открывается первая зона Френеля, освещенность в Р увеличивается и становится максимальной при полностью открытой первой зоне. По мере открывания второй зоны Френеля освещенность убывает и при полностью открытой второй зоне уменьшается почти до нуля. Затем освещенность будет увеличиваться снова, и т. д. Эти на первый взгляд парадоксальные результаты, предсказываемые на основе принципа Гюйгенса—Френеля, хорошо согласуются с экспериментом. Подчеркнем, что они находятся в вопиющем противоречии с предсказаниями геометрической оптики, согласно которой при падении плоской волны освещенность в точке Р, лежащей на оси круглого отверстия, не зависит от диаметра отверстия. Дифракция Френеля на круглом диске. Пятно Араго—Пуассона. Наиболее неожиданным в полученных выше результатах является, пожалуй, то, что при двух открытых зонах Френеля (и вообще при небольшом четном числе открытых зон) освещенность в точке Р близка к нулю. Не менее неожиданным является то, что в точке Р позади непрозрачного круглого экрана, расположенного на месте преграды с отверстием, освещенность не будет равна нулю, как это следовало бы из геометрической оптики. Если при этом непрозрачный круглый экран перекрывает лишь несколько первых зон Френеля, то в точке Р освещенность будет почти такой же, как и без экрана. В этом можно убедиться, если рассматривать вектор А, изображающий колебания напряженности поля в точке Р при полностью открытой волновой поверхности, как сумму двух векторов, один из которых изображает колебания от открытого участка волновой поверхности, а другой — от тех зон Френеля, которые перекрыты экраном. В центре геометрической тени оказывается свет — так называемое пятно Араго—Пуассона. Это предсказание теории Френеля произвело сильное впечатление на его современников. В 1818 г. член конкурсного комитета Французской академии С. Пуассон, рассматривавший представленный на премию мемуар Френеля, пришел к выводу о том, что в центре тени маленького диска должно находиться светлое пятно, но счел этот вывод столь абсурдным, что выдвинул его как возражение против волновой теории света, развивавшейся Френелем. Однако другой член того же комитета Араго выполнил эксперимент, показавший, что это удивительное предсказание правильно. Расстояния, на которых сказывается дифракция. Теперь не представляет труда оценить те условия наблюдения, при которых дифракционные явления становятся существенными и картина распределения освещенности на экране заметно отличается от предсказываемой геометрической оптикой. По геометрической оптике распределение освещенности на экране должно соответствовать форме отверстия, так что освещенность экрана равна нулю в области геометрической тени, а в точке Р такая же, как и в отсутствие преграды. Но мы видели, что в случае, когда на отверстии укладывается лишь несколько зон Френеля, освещенность в точке Р совсем иная. Это дает возможность оценить то расстояние
Построения Френеля позволяют легко рассчитать освещенность позади непрозрачного круглого экрана или экрана с круглым отверстием только в точках, лежащих на оси симметрии. Найти вид всей дифракционной картины на экране очень трудно. Дифракция Фраунгофера. Но можно осуществить такие условия наблюдения дифракции света, при которых возможен полный расчет распределения освещенности в дифракционной картине на экране. Пусть плоская монохроматическая волна от бесконечно удаленного точечного источника падает на экран
Рис. 204. Наблюдение дифракции в параллельных лучах складывающиеся в точке Р колебания имеют такую же разность фаз, как и до линзы на плоскости, перпендикулярной к этим лучам. Такая схема наблюдения дифракции была предложена И. Фраунгофером. Пусть отверстие в экране
Рис. 205. Наблюдение дифракции от щели с параллельными краями Построенные по принципу Гюйгенса волновые поверхности позади щели представляют собой цилиндрические поверхности с образующей, параллельной краям щели (рис. 206). Так как волновая поверхность в направлении оси у не ограничена, то дифракционных эффектов в этом направлении быть не может. Поэтому весь прошедший через линзу и попадающий на экран дифрагированный свет будет сосредоточен вдоль линии
Рис. 206. Волновые поверхности, построенные по принципу Гюйгенса Если создающий падающую волну точечный источник сместить вдоль оси у так, чтобы падающие на щель параллельные лучи образовали некоторый угол с осью Согласно принципу Гюйгенса—Френеля волновую поверхность падающей волны в щели на оси х следует разбить на столь малые участки, чтобы колебания в точке наблюдения Р, вызываемые вторичными волнами от всех точек одного участка, имели почти одинаковую фазу. Колебания в точке Р, вызываемые вторичными волнами, распространяющимися под углом
Рис. 207. К расчету суммарного колебания в точке Р Вектор
Рис. 208. Сложение колебаний с помощью векторной диаграммы Найдем длину суммарного вектора
откуда
Освещенность экрана
где
Рис. 209. Распределение освещенности на экране при дифракции плоской волны на щели Освещенность в центре первой побочной полосы, как видно из формулы (6), почти в 25 раз меньше освещенности в центре картины. Освещенность обращается в нуль тогда, когда аргумент синуса в (6) кратен
Отметим, что положение минимумов освещенности легко найти и без помощи формулы (6). Для этого достаточно только сообразить, что минимумам соответствует разность хода I между крайними лучами (рис. 207), равная целому числу длин волн X. Действительно, если разность хода I равна, например, X, то всю щель можно разбить на пары одинаковых участков, отстоящих друг от друга на Чем уже щель, тем шире дифракционные полосы. Из формулы (7) видно, что при уменьшении ширины щели • В чем заключаются особенности дифракционных явлений в оптике? • Сформулируйте принцип Гюйгенса—Френеля. Как рассчитать колебания в некоторой точке, вызываемые проходящей через отверстие в экране световой волной? • Что такое зоны Френеля? Как осуществляется их построение? • Докажите, опираясь на формулу (2), что площади зон Френеля одинаковы. • Как объяснить периодические изменения освещенности в центре дифракционной картины от круглого отверстия при монотонном изменении диаметра отверстия или расстояния от отверстия до экрана? • Как оценить расстояние от препятствия (экрана или отверстия в нем) до точки наблюдения, - при котором становятся заметными дифракционные явления? • Чем отличаются условия наблюдения дифракции Фраунгофера и дифракции Френеля? • Покажите, что дифракция Френеля и дифракция Фраунгофера не представляют собой разные физические явления, а соответствуют разным условиям наблюдения одного и того же явления. Сравните дифракцию Френеля при • Как изменятся ширина центральной полосы при дифракции Фраунгофера на щели и освещенность в ее середине, если ширину щели увеличить вдвое? Изменится ли при этом отношение освещенностей в побочных и центральной дифракционных полосах?
|
1 |
Оглавление
|