Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 8. Конденсаторы. ЭлектроемкостьРассмотрим два заряженных проводника. Предположим, что все силовые линии, начинающиеся на одном из них, заканчиваются на другом. Для этого, разумеется, они должны иметь равные и противоположные по знаку заряды. Такая система двух проводящих тел называется конденсатором. Примеры конденсаторов. Примерами конденсаторов могут служить две концентрические проводящие сферы (сферический, или шаровой, конденсатор), две параллельные плоские проводящие пластины при условии, что расстояние между ними мало по сравнению с размерами пластин (плоский конденсатор), два коаксиальных проводящих цилиндра при условии, что их длина велика по сравнению с зазором между цилиндрами (цилиндрический конденсатор). Два проводника, образующие конденсатор, называются его обкладками.
Рис. 41. Электрическое поле в сферическом, плоском и цилиндрическом конденсаторах Во всех таких системах при сообщении обкладкам равных по модулю и противоположных по знаку зарядов электрическое поле практически целиком заключено в пространстве между обкладками (рис. 41). Внешний вид некоторых используемых в технике конденсаторов показан на рис. 42. Основная характеристика конденсатора — электроемкость или просто емкость С, определяемая как отношение заряда одной из обкладок к разности потенциалов т. е. к напряжению, между ними:
Распределение зарядов на обкладках будет одинаковым независимо от того, большой или малый заряд им сообщен. Это значит, что напряженность поля, а следовательно, и разность потенциалов между обкладками, пропорциональны сообщенному конденсатору заряду. Поэтому емкость конденсатора не зависит от его заряда.
Рис. 42. Устройство, внешний вид и условные обозначения на электрических схемах некоторых конденсаторов В вакууме емкость определяется исключительно геометрическими характеристиками конденсатора, т. е. формой, размерами и взаимным расположением обкладок. Единицы емкости. В СИ за единицу электроемкости принят фарад
В абсолютной электростатической системе единиц СГСЭ электроемкость имеет размерность длины и измеряется в сантиметрах:
На практике обычно приходится иметь дело с конденсаторами, емкость которых значительно меньше 1 Ф. Поэтому используются доли этой единицы — микрофарад (мкФ) и пикофарад
Электроемкость и геометрия конденсатора. Зависимость емкости конденсатора от его геометрических характеристик легко проиллюстрировать простыми опытами. Воспользуемся для этого электрометром, подключенным к двум плоским пластинам, расстояние между которыми можно изменять (рис. 43). Чтобы заряды пластин были одинаковы и все поле было сосредоточено только между ними, следует заземлить вторую пластину и корпус электрометра. Отклонение стрелки электрометра пропорционально напряжению между обкладками. Если сдвигать или раздвигать пластины конденсатора, то при неизменном заряде напряжение будет соответственно уменьшаться или увеличиваться: емкость тем больше, чем меньше расстояние между пластинами. Аналогично можно убедиться в том, что емкость конденсатора тем больше, чем больше площадь его пластин. Для этого можно просто сдвигать пластины при неизменном зазоре между ними.
Рис. 43. Емкость конденсатора зависит от расстояния между пластинами Емкость плоского конденсатора. Получим формулу для емкости плоского конденсатора. Поле между его обкладками однородно за исключением небольшой области вблизи краев пластин. Поэтому напряжение между обкладками равно произведению напряженности поля Е на расстоянии
В СИ, где
В системе единиц СГСЭ k = 1 и
Емкость сферического конденсатора. Совершенно аналогично можно вывести формулу для емкости сферического конденсатора, рассматривая электрическое поле в промежутке между двумя заряженными концентрическими сферами радиусов
Выражение для емкости получаем, подставляя
Емкость уединенного проводника. Иногда вводят понятие емкости уединенного проводника, рассматривая предельный случай конденсатора, одна из обкладок которого удалена на бесконечность. В частности, емкость уединенного проводящего шара получается из (5) в результате предельного перехода
В системе единиц СГСЭ, где Конденсатор с диэлектриком. В рассмотренных выше примерах конденсаторов пространство между обкладками считалось пустым. Тем не менее полученные выражения для емкости справедливы и тогда, когда это пространство заполнено воздухом, как это было в описанных простых опытах. Если пространство между обкладками заполнить каким-либо диэлектриком, емкость конденсатора увеличивается. В этом легко убедиться на опыте, вдвигая диэлектрическую пластину в промежуток между обкладками заряженного конденсатора, подключенного к электрометру (рис. 43). При неизменном заряде конденсатора напряжение между обкладками уменьшается, что свидетельствует о возрастании емкости. Уменьшение разности потенциалов между обкладками при внесении туда диэлектрической пластины свидетельствует о том, что напряженность электрического поля в зазоре становится меньше. Это уменьшение зависит от того, какой именно диэлектрик используется в опыте. Диэлектрическая проницаемость. Для характеристики электрических свойств диэлектрика вводят физическую величину, называемую диэлектрической проницаемостью. Диэлектрическая проницаемость
Приведенное здесь определение диэлектрической проницаемости соответствует феноменологическому подходу, при котором рассматриваются только макроскопические свойства вещества в электрическом поле. Микроскопический подход, основанный на рассмотрении поляризации атомов или молекул, из которых состоит вещество, предполагает исследование какой-либо конкретной модели и позволяет не только подробно описывать электрические и магнитные поля внутри вещества, но и понять, как протекают макроскопические электрические и магнитные явления в веществе. На этом этапе мы ограничиваемся только феноменологическим подходом.
Рис. 44. Параллельное соединение конденсаторов У твердых диэлектриков значение Батареи конденсаторов. При использовании конденсаторов их иногда соединяют в батареи. При параллельном соединении (рис. 44) напряжения конденсатор, имеем
С другой стороны,
Сравнивая (8) и (9), получаем, что емкость батареи параллельно соединенных конденсаторов равна сумме их емкостей:
Рис. 45. Последовательное соединение конденсаторов При последовательном соединении предварительно незаряженных конденсаторов (рис. 45) заряды
С другой стороны, рассматривая батарею как один конденсатор, имеем
Сравнивая (11) и (12), видим, что при последовательном соединении конденсаторов складываются обратные емкостям величины:
При последовательном соединении емкость батареи меньше самой малой из емкостей соединенных конденсаторов. • В каком случае два проводящих тела образуют конденсатор? • Что называется зарядом конденсатора? • Как установить связь между единицами емкости СИ и СГСЭ? • Объясните качественно, почему емкость конденсатора увеличивается при уменьшении зазора между обкладками. • Получите формулу для емкости плоского конденсатора, рассматривая электрическое поле в нем как суперпозицию полей, создаваемых двумя плоскостями, заряженными разноименно. • Получите формулу для емкости плоского конденсатора, рассматривая его как предельный случай сферического конденсатора, у которого • Почему нельзя говорить о емкости уединенной бесконечной плоской пластины или отдельного бесконечно длинного цилиндра? • Охарактеризуйте кратко различие между феноменологическим и микроскопическим подходами при исследовании свойств вещества в электрическом поле. • Каков смысл диэлектрической проницаемости вещества? • Почему при расчете емкости батареи последовательно соединенных конденсаторов оговаривалось условие, чтобы они предварительно не были заряжены? • В чем смысл последовательного соединения конденсаторов, если оно приводит лишь к уменьшению емкости? Поле внутри и вне конденсатора. Чтобы подчеркнуть различие между тем, что называют зарядом конденсатора, и полным зарядом обкладок, рассмотрим следующий пример. Пусть наружная обкладка сферического конденсатора заземлена, а внутренней сообщен заряд д. Весь этот заряд равномерно распределится по внешней поверхности внутренней обкладки. Тогда на внутренней поверхности наружной сферы индуцируется заряд
Рис. 46. Сферический конденсатор во внешнем электрическом поле Заряд на внешней поверхности обкладки. Но характер поля во внешнем пространстве и заряд, индуцированный на наружной поверхности внешней сферы, зависят от величины и положения заряда Для нахождения величины индуцированного заряда будем рассуждать следующим образом. Электрическое поле в любой точке пространства создается зарядом на поверхности шара, который распределен там, разумеется, неравномерно — как раз так, чтобы обратилась в нуль результирующая напряженность поля внутри шара. Согласно принципу суперпозиции потенциал в любой точке можно искать в виде суммы потенциалов полей, создаваемых точечным зарядом
Рис. 47. Поле точечного заряда вблизи заземленного проводящего шара Тогда полный потенциал в центре заземленного шара равен
откуда
Знак минус отражает тот факт, что индуцированный заряд всегда противоположного знака. Итак, мы видим, что заряд на наружной поверхности внешней сферы конденсатора определяется тем окружением, в котором находится конденсатор, и не имеет никакого отношения к заряду конденсатора д. Полный заряд внешней обкладки конденсатора, разумеется, равен сумме зарядов ее внешней и внутренней поверхностей, однако заряд конденсатора определяется только зарядом внутренней поверхности этой обкладки, который связан силовыми линиями поля с зарядом внутренней обкладки. В разобранном примере независимость электрического поля в пространстве между обкладками конденсатора и, следовательно, его емкости от внешних тел (как заряженных, так и незаряженных) обусловлена электростатической защитой, т. е. толщей металла внешней обкладки. К чему может привести отсутствие такой защиты, можно увидеть на следующем примере. Плоский конденсатор с экраном. Рассмотрим плоский конденсатор в виде двух параллельных металлических пластин, электрическое поле которого практически целиком сосредоточено в пространстве между пластинами. Заключим конденсатор в незаряженную плоскую металлическую коробку, как показано на рис. 48. На первый взгляд может показаться, что картина поля между обкладками конденсатора не изменится, так как все поле сосредоточено между пластинами, а краевым эффектом мы пренебрегаем. Однако легко видеть, что это не так. Снаружи конденсатора напряженность поля равна нулю, поэтому во всех точках слева от конденсатора потенциал одинаков и совпадает с потенциалом левой пластины. Точно так же потенциал любой точки справа от конденсатора совпадает с потенциалом правой пластины (рис. 49). Поэтому, заключая конденсатор в металлическую коробку, мы соединяем проводником точки, имеющие разный потенциал. В результате в металлической коробке будет происходить перераспределение зарядов до тех пор, пока не выравняются потенциалы всех ее точек. На внутренней поверхности коробки индуцируются заряды, и появится электрическое поле внутри коробки, т. е. снаружи конденсатора (рис. 50).
Рис. 48. Конденсатор в металлической коробке
Рис. 49. Электрическое поле заряженного плоского конденсатора
Рис. 50. Электрическое поле заряженного конденсатора, помещенного в металлическую коробку Но это означает, что на внешних поверхностях пластин конденсатора тоже появятся заряды. Так как при этом полный заряд изолированной пластины не меняется, то заряд на ее внешней поверхности может возникнуть только за счет перетекания заряда с внутренней поверхности. Но при изменении заряда на внутренних поверхностях обкладок изменится напряженность поля между пластинами конденсатора. Таким образом, заключение рассмотренного конденсатора в металлическую коробку приводит к изменению электрического состояния внутреннего пространства. Изменение зарядов пластин и электрического поля в этом примере может быть легко рассчитано. Обозначим заряд изолированного конденсатора через
откуда
Рис. 51. Переход к эквивалентной схеме для конденсатора в металлической коробке Разность потенциалов между обкладками конденсатора Емкость изолированного конденсатора есть
Этот результат легко понять, если учесть, что после надевания коробки поле существует во всех трех промежутках между пластинами, т. е. фактически имеются три одинаковых конденсатора, эквивалентная схема включения которых показана на рис. 51. Вычисляя емкость получившейся системы конденсаторов, получаем Надетая на конденсатор металлическая коробка осуществляет электростатическую защиту системы. Теперь мы можем подносить снаружи к коробке любые заряженные или незаряженные тела и при этом электрическое поле внутри коробки не изменится. Значит, не изменится и емкость системы. Обратим внимание на то, что в разобранном примере, выяснив все, что нас интересовало, мы тем не менее обошли стороной вопрос о том, какие же силы осуществили перераспределение зарядов. Какое электрическое поле вызвало движение электронов в материале проводящей коробки? Очевидно, что это может быть только то неоднородное поле, которое выходит за пределы конденсатора вблизи краев пластины (см. рис. 39). Хотя напряженность этого поля мала и не принимается во внимание при расчете изменения емкости, именно она определяет суть рассматриваемого явления — перемещает заряды и этим вызывает изменение напряженности электрического поля внутри коробки. • Почему под зарядом конденсатора следует понимать не полный заряд обкладки, а только ту его часть, что находится на ее внутренней стороне. обращенной к другой обкладке? • В чем проявляется роль краевых эффектов при рассмотрении электростатических явлений в конденсаторе? • Как изменится емкость батареи конденсаторов, если замкнуть между собой обкладки одного из них?
|
1 |
Оглавление
|