Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 19. Энергия магнитного поляМагнитное поле обладает энергией. Проще всего в этом убедиться, рассматривая процесс спадания тока в катушке при отсоединении ее от источника тока в схеме на рис. 123а. Опыт по обнаружению энергии магнитного поля. До размыкания ключа в катушке идет некоторый ток За счет каких запасов энергии выделяется теплота — ведь источник питания уже отключен? Здесь убывает ток и создаваемое им магнитное поле; значит, мы можем говорить об энергии тока или об энергии создаваемого им магнитного поля.
Рис. 123. Электрическая цепь для изучения магнитной энергии тока По аналогии с электростатикой, где можно говорить об энергии зарядов или об энергии создаваемого ими поля, естественно ожидать, что в случае постоянного тока допустимы оба представления: энергию можно рассматривать либо как энергию тока, либо как энергию создаваемого им магнитного поля. Но мы уже видели, что, хотя не бывает электрического заряда без создаваемого им поля, электрическое поле без заряда — вихревое поле — может существовать и оно обладает энергией. Поэтому вопрос о локализации электрической энергии решается в пользу поля. Как мы увидим немного позже, точно так же обстоит дело и с магнитной энергией. Расчет энергии магнитного поля. Подсчитаем энергию магнитного поля. Из закона сохранения энергии очевидно, что в рассматриваемом нами опыте (рис. 123б) вся энергия магнитного поля в конце концов выделится в виде джоулевой теплоты на сопротивлении
С учетом этого равенства выражение для
Выделяющаяся теплота
Рис. 124. К вычислению энергии магнитного поля Объемная плотность энергии магнитного поля. Как и в электростатике, можно ввести понятие объемной плотности энергии магнитного поля. Рассматривая однородное магнитное поле внутри длинного соленоида, подставим во вторую из формул (3) выражение (10) § 17 для индуктивности длинного соленоида, а ток
откуда объемная плотность энергии магнитного поля
Вернемся к опыту, схема которого показана на рис. 123, и повторим его, вдвинув предварительно в катушку железный сердечник. Установившееся значение силы тока в катушке будет таким же, так как сердечник не сказывается на полном сопротивлении цепи постоянного тока. Но при размыкании ключа мы обнаружим, что теперь в резисторе Магнитная проницаемость вещества. Опыт показывает, что индуктивность всякого контура зависит от свойств среды, в которой он находится. Будем считать, что окружающая среда однородна и заполняет все пространство, где имеется магнитное поле. Для длинной катушки это практически означает, что сердечник заполняет все пространство внутри ее обмотки. Тем более это справедливо и для замкнутой тороидальной катушки. Обозначим через
называют относительной магнитной проницаемостью (или просто магнитной проницаемостью) вещества, из которого сделан сердечник. Магнитная проницаемость зависит от рода (химического состава) вещества и от его состояния, например от температуры. Она показывает, во сколько раз увеличивается Вещества с О природе магнитных свойств вещества. Магнитные свойства вещества обусловлены тем, что при помещении его во внешнее магнитное поле происходит намагничивание — каждый малый его элемент приобретает магнитный момент, т. е. становится магнитным диполем, подобным маленькому замкнутому контуру с током. Диамагнетизм вещества представляет собой индукционный эффект, обусловленный индуцированными магнитным полем орбитальными токами в атомах или молекулах. Диамагнетизм — общее свойство всех веществ, но наиболее он проявляется в тех веществах, где атомы или молекулы не обладают собственным магнитным моментом. Парамагнетизм и ферромагнетизм, как правило, связаны с наличием у электронов собственных, не связанных с их орбитальным движением магнитных моментов. В кристаллах ферромагнитных веществ оказывается энергетически выгодной параллельная ориентация магнитных моментов электронов, и образуются макроскопические намагниченные области протяженностью упорядочение полей отдельных доменов. У некоторых ферромагнитных веществ упорядоченная ориентация магнитных моментов доменов сохраняется и после выключения внешнего магнитного поля — получаются постоянные магниты. Отмеченными тремя типами магнетиков не исчерпывается все многообразие магнитных свойств вещества. Среди магнитоупорядоченных веществ, кроме ферромагнетиков, различают еще, например, антиферромагнетики, ферримагнетики, для которых характерны более сложные закономерности магнитной структуры. Микроскопическая теория, правильно объясняющая строение и магнитные свойства вещества, может быть развита только на основе квантовых представлений. Магнитоупорядоченные вещества находят все более и более широкое применение в науке и технике, начиная от всем известных радио- и электротехнических устройств до современной микроэлектроники и вычислительной техники. • Покажите из энергетических соображений, что при замыкании цепи ток в катушке индуктивности нарастает постепенно. От чего зависит скорость его нарастания? • Какой вывод о зависимости магнитной энергии от индуктивности катушки можно сделать из формулы (3): эта энергия пропорциональна или обратно пропорциональна индуктивности? • Объясните, почему наличие железного сердечника не приводит к изменению установившегося значения силы тока в катушке в опыте, схема которого показана на рис. 123. • Приведите аргументы, подтверждающие квадратичную зависимость объемной плотности магнитной энергии от индукции поля. • Дайте качественное объяснение различию в характере поведения диамагнетиков и парамагнетиков в неоднородном магнитном поле.
|
1 |
Оглавление
|