Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
6-2. ЭЛЕКТРОННЫЕ ВОЛЬТМЕТРЫВ электронных вольтметрах измеряемое напряжение преобразуется с помощью аналоговых электронных устройств в постоянный ток, который подается на магнитоэлектрический измерительный механизм со шкалой, градуированной в единицах напряжения. Электронные вольтметры обладают высокой чувствительностью и широким диапазоном измеряемых напряжений (от десятков нановольт на постоянном токе до десятков киловольт), большим входным сопротивлением (более 1 МОм), могут работать в широком частотном диапазоне (от постоянного тока до частот порядка сотен мегагерц). Эти достоинства обусловили широкое распространение электронных вольтметров. Наиболее часто в электронных вольтметрах применяют схемы с прямым преобразованием сигналов (см. § 4-5). В этом случае аналоговые электронные узлы могут вносить значительные погрешности. Особенно это сказывается при измерении малых напряжений или напряжений высоких частот. Поэтому электронные вольтметры обычно имеют относительно невысокие классы точности (1—6). Вольтметры с уравновешивающим преобразованием, как правило, имеют более высокие классы точности В настоящее время выпускается множество различных типов вольтметров. По своему назначению и принципу действия наиболее распространенные вольтметры могут быть подразделены на вольтметры постоянного тока, переменного тока, универсальные, импульсные и селективные. Вольтметры постоянного тока. Упрощенная структурная схема таких вольтметров показана на рис. 6-1, где
Рис. 6-1. Структурная схема электронного вольтметра постоянного тока делитель напряжения; УПТ — усилитель постоянного тока; ИМ — магнитоэлектрический измерительный механизм. Угол отклонения указателя измерительного механизма Последовательное соединение делителя напряжения и усилителя является характерной особенностью построения всех электронных вольтметров. Такая структура позволяет делать вольтметры высокочувствительными и многопредельными за счет изменения в широких пределах их общего коэффициента преобразования. Однако повышение чувствительности вольтметров постоянного тока путем увеличения коэффициента усиления УПТ наталкивается на технические трудности из-за нестабильности работы УПТ, характеризующейся изменением Для уменьшения влияния нестабильности УПТ в вольтметрах предусматривают возможность регулировки перед измерением «нуля» и коэффициента преобразования усилителя. Рассмотренная структурная схема вольтметра постоянного тока используется в составе универсальных вольтметров (см. далее), поскольку при незначительном усложнении — добавлении преобразователя переменного напряжения в постоянное, появляется возможность измерения и переменного напряжения. Для создания высокочувствительных вольтметров постоянного тока (микровольтметров) применяют усилители постоянного тока, построенные по схеме временная диаграмма напряжений на выходе отдельных блоков. Генератор управляет работой модулятора и демодулятора, представляющих собой в простейшем случае аналоговые ключи (см. § 8-3), синхронно замыкая и размыкая их с некоторой частотой. На выходе модулятора возникает однополярный импульсный сигнал, амплитуда которого пропорциональна измеряемому напряжению. Переменная составляющая этого сигнала усиливается усилителем Среднее значение напряжения выходного сигнала пропорционально входному напряжению Вольтметры переменного тока.Такие вольтметры состоят из преобразователя переменного напряжения в постоянное, усилителя и магнитоэлектрического измерительного механизма. Возможны две обобщенные структурные схемы вольтметров переменного тока (рис. 6-3), различающиеся своими характеристиками. В вольтметрах по схеме рис. 6-3, а измеряемое напряжение их сначала преобразуется в постоянное напряжение, которое затем подается на УПТ и
Рис. 6-2. Структурная схема (а) и временная диаграмма сигналов (б) электронного вольтметра постоянного тока с усилителем
Рис. 6-3. Структурные схемы вольтметров переменного тока диапазоне (от десятков герц до В вольтметрах, выполненных по схеме 6-3, б, благодаря предварительному усилению удается повысить чувствительность. Однако создание усилителей переменного тока с большим коэффициентом усиления, работающих в широком диапазоне частот, — достаточно трудная техническая задача. Поэтому такие вольтметры имеют относительно низкий частотный диапазон (1 — 10 МГц); верхний предел измерений при максимальной чувствительности составляет десятки или сотни микровольт. В зависимости от вида преобразователя переменного напряжения в постоянное отклонения указателя измерительного механизма вольтметров могут быть пропорциональны амплитудному (пиковому), среднему (средневыпрямленному) или действующему значениям измеряемого напряжения. В связи с этим вольтметры называют соответственно вольтметрами амплитудного, среднего или действующего значения. Однако независимо от вида преобразователя шкалу вольтметров переменного тока, как правило, градуируют в действующих значениях напряжения синусоидальной формы. Вольтметры амплитудного значения имеют преобразователи амплитудных значений (пиковые детекторы) с открытым (рис. 6-4, а) или закрытым (рис. 6-5, а) входами, где
Рис. 6-4. Схема (а) и временные диаграммы сигналов (б и в) преобразователя амплитудных значений (пикового детектора) с открытым входом
Рис. 6-5. Схема (а) и временные диаграммы сигналов (б) преобразователя амплитудных значений с закрытым входом вольтметр имеет структуру рис. 6-3, а, то для преобразователя
где Особенностью амплитудных преобразователей с открытым входом является то, что они пропускают постоянную составляющую входного сигнала (положительную для данного включения диода). Так, при В преобразователях с закрытым входом (рис. 6-5, а, б) в установившемся режиме на резисторе устанавливается фильтр нижних частот Особенности амплитудных преобразователей с открытым и закрытым входами следует учитывать при измерении электронными вольтметрами. Поскольку шкала вольтметров градуируется в действующих значениях синусоидального напряжения, то при измерении напряжений другой формы необходимо делать соответствующий пересчет, если известен коэффициент амплитуды измеряемого напряжения. Амплитудное значение измеряемого напряжения несинусоидальной формы Вольтметры среднего значения имеют преобразователи переменного напряжения в постоянное, аналогичные преобразователям, используемым в выпрямительных приборах (см. § 5-4). Такие вольтметры обычно имеют структуру, показанную на рис. 6-3, б. В этом случае на выпрямительный преобразователь подается предварительно усиленное напряжение
Шкала таких вольтметров также градуируется в действующих значениях синусоидального напряжения. При измерении напряжения несинусоидальной формы среднее значение этого напряжения Вольтметры действующего значения имеют преобразователь переменного напряжения с квадратичной статической характеристикой преобразования
Рис. 6-6. Схема электронного вольтметра действующего значения (с равномерной шкалой) рис. 6-3, то независимо от формы кривой измеряемого напряжения отклонение указателя измерительного механизма пропорционально квадрату действующего значения измеряемого напряжения:
Как видно, такой вольтметр имеет квадратичную шкалу. Вольтметр действующего значения с равномерной шкалой показан на рис. 6-6, где используются два квадратических преобразователя, один из которых включен в цепь отрицательной обратной связи. В качестве таких преобразователей используют термопреобразователи, для которых термо-ЭДС равны соответственно:
Таким образом, отклонение указателя измерительного механизма пропорционально действующему значению измеряемого напряжения. В качестве примера можно привести выпускаемые промышленностью милливольтметр переменного тока
Рис. 6-7. Схема (а) и временная диаграмма сигналов (б) диодно-компенсационного вольтметра пределы 5 Гц — 5 МГц. Кроме рассмотренных вольтметров переменного тока, в настоящее время выпускаются диодно-компенсационные вольтметры. Принцип действия таких вольтметров поясняется схемой рис. 6-7, а, основными элементами которой являются: диод Д; высокочувствительный магнитоэлектрический гальванометр — нуль-индикатор Эти вольтметры являются наиболее точными из существующих электронных вольтметров, обладают высоким входным сопротивлением, широким частотным диапазоном (до Диодно-компенсационные вольтметры могут использоваться для точного измерения напряжения синусоидальной формы, а также для поверки и градуировки электронных вольтметров. Среди различных типов имеются вольтметры, предназначенные для измерения как периодических, так и импульсных напряжений. Таким прибором является компенсационный вольтметр Наряду с вольтметрами приборостроительная промышленность выпускает измерительные преобразователи напряжения (переменного и постоянного) и тока (переменного и постоянного) в унифицированный сигнал постоянного тока. Принципы построения таких преобразователей во многом схожи с рассмотренными принципами построения электронных вольтметров. Отличительной особенностью преобразователей является отсутствие на выходе измерительного механизма. Универсальные вольтметры.Такие вольтметры предназначены для измерения напряжений постоянного и переменного токов. Обобщенная структурная схема показана на рис. 6-8, где В — переключатель. В зависимости от положения переключателя В вольтметр работает по схеме вольтметра переменного тока с преобразователем П (положение В универсальных вольтметрах, называемых также комбинированными, часто предусматривается возможность измерения сопротивлений В качестве примера укажем универсальный вольтметр Импульсные вольтметры.Для измерения амплитуды импульсных сигналов различной формы применяют импульсные вольтметры. Особенности работы
Рис. 6-8. Структурная схема универсального вольтметра
Рис. 6-9. Компенсационная схема амплитудного преобразователя импульсных вольтметров определяются малой длительностью Импульсные вольтметры градуируют в амплитудных значениях измеряемых импульсов. Импульсные вольтметры могут быть выполнены по структурной схеме рис. 6-3, а, при этом используют преобразователи амплитудных значений с открытым входом, выходное напряжение которых должно быть равно амплитуде В нормативно-технической документации для импульсных вольтметров указывается диапазон допустимых значений длительности импульсов (или их частота) и скважность, при которых погрешности вольтметров находятся в пределах нормированных значений. Так, импульсный вольтметр
Рис. 6-10. Спектр
Селективные вольтметры.Такие вольтметры предназначены для измерения действующего значения напряжения в некоторой полосе частот или действующего значения отдельных гармонических составляющих измеряемого сигнала. Принцип действия селективного вольтметра заключается в выделении отдельных гармонических составляющих сигнала или сигнала узкой полосы частот с помощью перестраиваемого полосового фильтра и измерении действующего значения выделенных сигналов. На рис. 6-10 сплошными вертикальными линиями показан спектр некоторого измеряемого сигнала, а штриховой линией — идеализированная амплитудно-частотная характеристика полосового фильтра, имеющего коэффициент передачи Физически реализуемый полосовой фильтр не обладает строго прямоугольной амплитудно-частотной характеристикой. Это может привести к тому, что через такой фильтр пройдут соседние гармонические составляющие с некоторым коэффициентом Упрощенная структурная схема селективного вольтметра показана на рис. 6-11. Измеряемый сигнал их через избирательный
Рис. 6-11. Структурная схема селективного вольтметра входной усилитель ВУ подается на смеситель См, предназначенный для преобразования частотного спектра измеряемого сигнала. На выходе смесителя появляется сигнал, пропорциональный измеряемому сигналу, но с частотами спектра Функцию полосового фильтра в этой схеме выполняет УПЧ. Благодаря фиксированному (неперестраиваемому) значению частоты настройки УПЧ этот усилитель имеет большой коэффициент усиления и узкую полосу пропускания, что обеспечивает высокую чувствительность и избирательность селективного вольтметра. Промышленностью выпускается селективный микровольтметр
|
1 |
Оглавление
|