Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава шестнадцатая. ИЗМЕРЕНИЯ ВЕРОЯТНОСТНЫХ ХАРАКТЕРИСТИК СЛУЧАЙНЫХ ПРОЦЕССОВ16-1. ОБЩИЕ СВЕДЕНИЯИзмерения вероятностных характеристик случайных процессов (статистические измерения) составляют один из наиболее быстро развивающихся разделов измерительной техники. В настоящее время область распространения статистических методов исследования и обработки сигналов измерительной информации практически безгранична. Связь, навигация, управление, диагностика (техническая, медицинская), исследование среды и многие другие области немыслимы без знания и использования свойств сигналов и помех, описываемых их вероятностными характеристиками. Потребность в изучении свойств случайных процессов привела к развитию соответствующих методов и средств (преимущественно электрических). Появление анализаторов функций распределения вероятностей, коррелометров, измерителей математического ожидания, дисперсиометров и других видов измерителен вероятностных характеристик открыло новые возможности в области создания современной информационной и управляющей техники. Рассмотрим необходимые исходные определения и общие сведения о статистических измерениях (см. также § 2-2, 4-4). В теории статистических измерений используют следующие понятия и их аналоги, заимствованные из теории случайных функций (аналоги из математической статистики): реализация случайного процесса (выборочная функция), мгновенное значение (выборочное значение), совокупность мгновенных значений (выборка), вероятностная характеристика (предел выборочного среднего). Введем следующие обозначения: На рис. 16-1 представлена в качестве примера совокупность реализаций случайного процесса, воспроизводящих зависимости некоторого параметра X от времени
Рис. 16-1. Совокупность реализаций случайного процесса В теории случайных процессов их полное описание производится с помощью систем вероятностных характеристик: многомерных функций распределения вероятности, моментных функций, характеристических функций и т. п. В теории статистических измерений исследуемый случайный процесс представляется своими реализациями, причем полное представление осуществляется с помощью так называемого ансамбля, т. е. бесконечной совокупностью реализаций. Ансамбль — математическая абстракция, модель рассматриваемого процесса, но конкретные реализации, используемые в измерительном эксперименте, представляют собой физические объекты или явления и входят в ансамбль как его неотъемлемая часть. Если случайный процесс представлен ансамблем реализаций
где Вместо усреднения по совокупности может быть использовано усреднение по времени с использованием
Например, при определении математического ожидания
В общем случае результаты усреднения по совокупности (16-1) и по времени (16-2) неодинаковы. Предел выборочного среднего по совокупности (16-1) представляет собой вероятностную характеристику, выражающую зависимость вероятностных свойств процесса от текущего времени. Предел выборочного среднего по времени (16-2) представляет собой вероятностную характеристику, выражающую зависимость вероятностных свойств процесса от номера реализации. Наличие и отсутствие зависимости вероятностных характеристик от времени или от номера реализации определяет такие фундаментальные свойства процесса, как стационарность и эргодичность. Стационарным называется процесс, вероятностные характеристики которого не зависят от времени; соответственно эргодическим называется процесс, вероятностные характеристики которого не зависят от номера реализации. Следовательно, стационарный неэргодический случайный процесс — это такой процесс, у которого эквивалентны временные сечения (вероятностные характеристики не зависят от текущего времени), но не эквивалентны реализации (вероятностные характеристики зависят от номера реализации). Нестационарный эргодический процесс — это процесс, у которого эквивалентны реализации (вероятностные характеристики не зависят от номера реализации), но не эквивалентны временные сечения (вероятностные характеристики зависят от текущего времени). Классифицируя случайные процессы на основе этих признаков (стационарность и эргодичность), получаем следующие четыре класса процессов: стационарные эргодические, стационарные неэргодические, нестационарные эргодические, нестационарные неэргодические. Учет и использование описанных свойств случайных процессов играет большую роль при планировании эксперимента по определению их вероятностных характеристик. Поскольку измерение представляет собой процедуру нахождения величины опытным путем с помощью специальных технических средств, реализующих алгоритм, включающий в себя операцию сравнения с известной величиной, в статических измерениях должна применяться мера, воспроизводящая известную величину. Типовые алгоритмы измерений вероятностных характеристик случайных процессов, различающиеся способом применения меры в процессе измерений, представляются в следующем виде:
Рис. 16-2. Средства измерений вероятностных характеристик случайных процессов, когда сравнение с образцовой мерой является заключительной (а), выполняется до усреднения (б) и является начальной (в) операцией
где Данные алгоритмы различаются порядком выполнения операций. Операция сравнения с образцовой мерой На этих рисунках для обозначения блоков, реализующих операторы, входящие в выражения (16-4) — (16-6), используются те же обозначения. Так, мера, с помощью которой формируется известная величина Представленное на рис. 16-2, а средство измерений реализует следующую процедуру: на вход поступает совокупность реализаций Отличие процедуры, реализуемой средством измерений, представленным на рис. 16-2, б, заключается в том, что послеформирования совокупности Средство измерений (рис. 16-2, в) основано на формировании массива числовых эквивалентов мгновенных значений реализаций случайного процесса Погрешность результата измерения вероятностной характеристики случайного процесса
Для статистических измерений характерно обязательное наличие составляющей методической погрешности, обусловленной конечностью объема выборочных данных о мгновенных значениях реализаций случайного процесса, ибо при проведении физического эксперимента принципиально не может быть использован бесконечный ансамбль реализаций или бесконечный временной интервал. Соотношение (16-7) определяет результирующую погрешность, включающую в себя как методическую, так и инструментальную составляющие. В дальнейшем будут приводиться соотношения только для определения специфической для статистических измерений методической погрешности, обусловленной конечностью числа реализаций и временного интервала.
|
1 |
Оглавление
|