Главная > Прикладная теория цифровых автоматов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 8. КОНТРОЛЬ ВЫПОЛНЕНИЯ ОПЕРАЦИИ

8.1. ОБЩИЕ ПОЛОЖЕНИЯ

Контроль правильности выполнения операций может быть осуществлен применением специальных арифметических кодов, идея построения которых базируется на свойствах сравнения по модулю.

Дело в том, что при рассмотрении различных арифметических выражений исходные числа, входящие в эти выражения, можно заменять на другие, сравнимые с ними по выбранному модулю . В частности, каждое число может быть заменено своим вычетом. При этом все машинные числа считаются условно целыми.

Различают два метода получения контрольного кода: числовой и цифровой. При числовом методе контроля контрольный код заданного числа определяется как наименьший положительный остаток от делейия числа А на выбранный модуль

где — целая часть от деления числа А на

Величина модуля существенно влияет на качество контроля. Пели при числовом контроле где — основание системы счисления, в которой представлено число, то контролируется только младший разряд числа и контроль как таковой не имеет смысла. Для справедливы аналогичные соображения, так как опять не все разряды числа (при ) участвуют в контроле и ошибки в разрядах старше вообще не воспринимаются.

Для числового метода контроля по справедливы основные свойства сравнений. Поэтому, если

где

откуда

Аналогичным образом доказывается справедливость и следующих соотношений:

Пример. Заданы Найти

Недостатком числового метода контроля по является использование операции деления для определения остатка, что требует больших яатрат машинного времени.

При цифровом методе контроля контрольный код числа образуется делением суммы цифр числа на выбранный модуль при выполнении условий

или

Возможны два пути получения контрольного кода: 1) непосредственное деление суммы цифр на модуль суммирование цифр по Второй путь значительно проще, так как если то контрольный код получается только операцией суммирования. В этом заключается преимущество цифрового метода контроля перед числовым.

Пример. Заданы Найти

Однако при цифровом методе свойства сравнений не всегда справедливы. Происходит это из-за наличия переносов (заемов) при выполнении арифметических действий над числами. Поэтому получение контрольного кода результата операция должно сопровождаться, его коррекцией.

Допустим, заданы числа А и В и их контрольные коды

Требуется найти контрольный код При наличии результата С код находится по общему правилу:

Для сравнения контрольных кодов необходимо получить с через контрольные коды слагаемых.

Сумму цифр результата можно найти, зная цифры и количество переносов в каждом разряде. Каждый перенос уносит из одного разряда единиц, где — основание системы счисления, и добавляет одну 1 в следующий разряд, т. е. сумма цифр уменьшится на величину на каждый перенос. Тогда

где — количество переносов, возникших при сложении. Так как

то

Представив эти значения в (8.8), получим

Аналогичные рассуждения можно привести и для разности чисел

Пример. Заданы Найти .

1
Оглавление
email@scask.ru