Главная > Системы искусственного интеллекта
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.9.3. Выбор контрольных задач для испытания программы

При отборе и проверке результатов программа работает следующим образом. Вначале рассматривается результат, считающийся наиболее существенным. Ниже приводится описание последовательности рассмотрения этих результатов. Если это теорема, к ней применяются все продукции, у которых антецедент упрощает результат (т. е. увеличивает его полезность). Если рассматривается продукция, которая упрощает исходное выражение, ее применяют ко всем хранящимся в архиве программы теоремам и ко всем продукциям, которые усложняют исходные выражения, используя их в качестве антецедентов. Если это продукция, которая усложняет исходное выражение, она применяется к упрощающим продукциям, так же как и к продукциям с несколькими антецедентами. Выполняются не все возможные испытания и проверки продукций и теорем. Это связано с тем, что программа хранит наряду с каждым таким выражением комбинации, в которых оно уже участвовало. Поэтому такие операции не повторяются.

Из сказанного выше видно, что, несмотря на значительный объем проводимых испытаний, машинное время и память, занимаемая при этом, остаются в приемлемых пределах, так как не все результаты хранятся в памяти.

Результаты

Программа работает с шестью формальными теориями, построенными Расселом, Лукасевичем, Гильбертом, Бернеем и Шеффером. Она отыскивает все основные теоремы, причем иногда дает для них оригинальные доказательства. При этом используются все заданные метауровни. Программа умеет работать и на уровне предположений: ей задается конкретное выражение и требуется его доказать. Используемые программой стратегии в этом случае мало отличаются от обычных. Она просто инвертирует свои продукции, чтобы перейти от предположения к аксиомам. Во всяком случае, программа преуспела в том, что смогла сама доказать некоторые теоремы, которые ее создатель не смог доказать. Приведем беспристрастное суждение об этом самого Лукасевича: быть очень опытным и искусным в построении логических доказательств, чтобы суметь вывести из трех аксиом логики закон коммутативности или даже закон упрощения Программа Ж. Питра эффективно доказывает оба этих утверждения в рассматриваемой аксиоматике.

Пример доказательства

Аксиомы:

Продукция.

Продукция вначале порождает две мета-метатеоремы благодаря МММ-теоремам, которыми располагает сама программа. Для удобства мы будем использовать при доказательстве форму нотации, принятую в программе (префиксную польскую запись), только лишь для теорем. Программа получает следующие первые результаты:

Например, выводится из мета-мета-метатеоремы И и из с использованием подстановки для для к для с, где запятая употребляется в том смысле, как она используется в мета-метатеореме I программы. Таким образом, получаем

Рассмотрим теперь часть порождающего дерева, которое приводит нас в данном случае к интересной теореме:

(кликните для просмотра скана)

Чтобы достичь этого результата только своими средствами (полностью автономно), программа строит 5 мета-метатеорем, 21 метатеорему и 21 теорему, используя описанные выше процедуры. Отметим при этом важные результаты, полученные попутно в процессе общего доказательства, — это теоремы . Само доказательство теоремы в целом приведено в табл. 3.6. Другие теоремы, доказанные в дайной аксиоматике и при других наборах аксиом, можно найти в работе (Pitrat, 1966).

1
Оглавление
email@scask.ru