Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.6.3. Применение обученной нейронной сетиВажнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно действовать и в тех ситуациях, которым он не обучался. Так же и обученная нейронная сеть может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, можно нарисовать букву другим почерком, а затем предложить нейронной сети классифицировать новое изображение Веса обученной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения Отметим, что задачи классификации (типа распознавания букв) очень плохо алгоритмизируются. Если в случае распознавания букв верный ответ очевиден заранее, то в более сложных практических задачах обученная нейронная сеть выступает как эксперт, обладающий большим опытом и способный дать ответ на трудный вопрос. Примером такой задачи служит медицинская диагностика, где сеть может учитывать большое количество числовых параметров (энцефалограмма, давление, вес). Конечно, «мнение» сети в этом случае нельзя считать окончательным. Классификация предприятий по степени их перспективности - это уже привычный способ использования нейронных сетей в практике западных компаний. При этом сеть также использует множество экономических показателей, сложным образом связанных между собой. Нейросетевой подход особенно эффективен в задачах экспертной оценки по той причине, что он сочетает в себе способность компьютера к обработке чисел и способность мозга к обобщению и распознаванию. Говорят, что у хорошего врача способность к распознаванию в своей области столь велика, что он может провести приблизительную диагностику уже по внешнему виду пациента. Можно согласиться также, что опытный трейдер чувствует направление движения рынка по виду графика. Однако в первом случае все факторы наглядны, т. е. характеристики пациента мгновенно воспринимаются мозгом как «бледное лицо», «блеск в глазах». Во втором же случае учитывается только один фактор - курс за определенный период времени. Нейронная сеть позволяет обрабатывать огромное количество факторов (до нескольких тысяч), независимо от их наглядности. Это универсальный «хороший врач», который может поставить свой диагноз в любой области. Помимо задач классификации, нейронные сети широко используются для поиска зависимостей в данных и кластеризации. Кластеризация - это разбиение набора примеров на несколько компактных областей (кластеров), причем число кластеров заранее неизвестно. Кластеризация позволяет представить неоднородные данные в более наглядном виде и использовать далее для исследования каждого кластера различные методы. Например, нейронная сеть на основе методики использования МГУА (метода группового учета аргументов) позволяет по обучающей выборке построить зависимость одного параметра от других в виде полинома. Такая сеть может не только мгновенно выучить таблицу умножения, но и найти сложные скрытые зависимости в данных (например, финансовых), которые не обнаруживаются стандартными статистическими методами, быстро выявить фальсифицированные страховые случаи или недобросовестные предприятия. Особенно важны для практики, в частности, для финансовых приложений, задачи прогнозирования, поэтому поясним способы применения нейронных сетей в этой области более подробно Рассмотрим задачу прогнозирования курса акций на день вперед. Пусть имеется база данных, содержащая значения курса за последние 300 дней. Построим прогноз завтрашней цены на основе курсов за последние несколько дней. Понятно, что прогнозирующая нейронная сеть должна иметь всего один выход и столько входов, сколько предыдущих значений мы хотим использовать для прогноза, например, четыре последних значения. Составить обучающий пример очень просто, входными значениями будут курсы за четыре последних дня, а желаемым выходом - известный курс в следующий за ними день. Если нейронная сеть совместима с какой-либо системой обработки электронных таблиц (например, Excel), то подготовка обучающей выборки состоит из следующих операций: • занести значения курса акций последовательно в столбец таблицы; • скопировать значения котировок в 4 соседних столбца,
Рис. 1.9. Подготовка данных для нейронной сети в Excel • сдвинуть второй столбец на 1 ячейку вверх, третий столбец - на 2 и т. д. (рис. 1.9). Смысл этой подготовки состоит в том, что каждая строка таблицы теперь представляет собой обучающий пример, где первые четыре числа - входные значения сети, а пятое число - желаемое значение выхода. Исключение составляют последние четыре строки, где данных недостаточно. Поэтому эти строки не учитываются при обучении. Заметим, что в четвертой снизу строке заданы все четыре входных значения, но неизвестно значение выхода. Именно при применении к этой строке обученной сети и можно получить прогноз на следующий день. Как видно из этого примера, объем обучающей выборки зависит от выбранного количества входов. Если сделать 299 входов, то такая сеть потенциально могла бы строить лучший прогноз, чем сеть с 4 входами, однако в этом случае имеется всего один обучающий пример, и обучение бессмысленно. Это следует учитывать при выборе числа входов, выбирая разумный компромисс между глубиной предсказания (число входов) и качеством обучения (объем обучающей выборки). Укажем в заключение, что ряд практических примеров использования нейронных сетей приведен в третьей части книги.
|
1 |
Оглавление
|