Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Часть III. ПРИМЕНЕНИЕ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙГлава 6. ПРИМЕРЫ ПРИМЕНЕНИЯ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙРассмотрим несколько конкретных примеров применения аппарата искусственных нейронных сетей для решения популярных задач классификации, прогнозирования, аппроксимации, сжатия информации, построения экспертных систем и некоторых других. 6.1. Прогнозирование результатов выборовДанная задача стала классической для демонстрации работы нейросетевого классификатора. Она компактна, значения всех обучающих параметров представляются в форме «Да-Нет», основана на реальных данных и дает хороший результат. Содержательная постановка задачи взята из книги: Горбань А. Н., Россиев Д. А. Нейронные сети на персональном компьютере. - Новосибирск: Наука, 1996 (см. список литературы). 6.1.1. Содержательная постановка задачиРассмотрим использование нейроимитатора на примере предсказания итогов выборов президента США. На первый взгляд кажется, что итоги выборов зависит только от личностей кандидатов и от их программ. Однако и программы, и образы кандидатов создаются профессионалами. Оказывается, что если предвыборные компании всех кандидатов отработаны добросовестно и все участники сделали все возможное, то выбор практически предопределяется лишь объективными признаками сложившейся накануне выборов ситуации в стране. А кто победит, можно решать на основании ответов на следующие вопросы. 1) Правящая партия у власти более 1 срока? 2) Правящая партия получила больше 50 % на прошлых выборах? 3) В год выборов была активна третья партия? 4) Была серьезная конкуренция при выдвижении кандидата от правящей партии? 5) Кандидат от правящей партии был президентом в год выборов? 6) Был ли год выборов временем спада или депрессии? 7) Был ли рост среднего национального валового продукта на душу населения более 2,1%? 8) Произвел ли правящий президент существенные изменения в политике? 9) Во время правления были существенные социальные волнения? 10) Администрация правящей партии виновна в серьезной ошибке или скандале? 11) Кандидат правящей партии - национальный герой? 12) Кандидат оппозиционной партии - национальный герой? Обучающая выборка состоит из 31 примера, каждый из которых представляет ситуацию выборов, начиная с 1864 г. (табл. 6.1), где ответы «Да» обозначены единицами, а ответы «Нет» - нулями. Класс 1 означает, что в данной ситуации был избран кандидат правящей партии, класс 2 - кандидат оппозиционной партии. После обучения сеть должна предсказать ответ для ситуации, отраженной табл. 6.2, которая не входила в обучающую выборку (когда производились эксперименты, результат выборов 1992 г. еще не был известен). (кликните для просмотра скана) 6.1.2. Нейросетевое моделированиеДля решения поставленной задачи выберем в качестве программы-нейроимитатора нейропакет НейроПро (см. разд. 5.2). Решение будем проводить по этапам. 1) Подготовка исходных данных. Используя табл. 6.1, подготовим в Excel обучающую выборку в виде табл. 6.3; сохраним эти данные в виде файла dBASE, как описано в разд. 5.2, с названием Выборы.dbf. Таблица 6.3 (см. скан) Исходные данные (обучающая выборка) в виде таблицы Подготовим данные для опроса в соответствии с табл. 6.2 в форме табл. 6.4 и сохраним под именем Прогноз.dbf. Таблица 6.4 (см. скан) Исходные данные для прогноза 2) Задание топологии нейронной сети. Будем использовать нейронную сеть с одним скрытым слоем Очевидно, число входных нейронов - 12, число выходных нейронов - 1. Для определения числа нейронов в скрытом слое воспользуемся рекомендациями, приведенными в разд 1.3 Использование формулы (1.5) при 3) Обучение нейронной сети. Используя нейропакет НейроПро и подготовленный файл Выборы.dbf, действуя в соответствии с правилами, изложенными в разд. 5.2, создадим нейронную сеть заданной топологии, проведем ее обучение и определим наиболее значащие признаки. Полученный результат отражен на рис. 6.1 и несколько отличается от приведенного в цитированном источнике. В нашем исследовании получилось, что наибольшее влияние на исход выборов оказывают ответы на вопросы 4, 8, 3 и 9. Сохраним сеть и проект под именем «Выборы»; закроем программу. 4) Опрос обученной сети. Вновь запустим программу НейроПро, откроем сохраненный проект и файл Прогноз.dbf. Выберем режим тестирования сети. Полученный при этом результат (в нашем случае - 2,01401, т. К сожалению, крайне неясно, можно ли использовать аналогичный нейросетевой подход для прогноза выборов в условиях пока еще очень нестабильной России
Рис. 6.1 Информативность параметров при выборе президента
|
1 |
Оглавление
|