Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.2. ПерсептроныСистематическое изучение искусственных нейронных сетей было начато Маккалохом и Питтсом в 1943 году. Позднее они исследовали нейросетевые парадигмы для распознавания изображений, подвергаемых сдвигам и поворотам, используя при этом нейронную модель, показанную на рис. 2.3. Элемент X умножает каждый вход х, на вес
Рис. 2.3. Персептронный нейрон принципе описываются и более сложные системы В 60-е годы персептроны вызвали большой интерес Розенблатт доказал теорему об обучении персептронов Уидроу продемонстрировал возможности систем персептронного типа Однако дальнейшие исследования показали, что персептроны не способны обучиться решению ряда простых задач Минский строго проанализировал эту проблему и показал, что существуют жесткие ограничения на то, что могут выполнять однослойные персептроны, и, следовательно, на то, чему они могут обучаться Так как в то время методы обучения многослойных сетей не были известны, исследования в области нейронных сетей пришли в упадок Возрождение интереса к нейронным сетям связано в большей степени со сравнительно недавним открытием с таких методов Работа Минского возможно и охладила пыл первых исследователей нейронных сетей, однако обеспечила необходимое время для развития лежащей в их основе теории Важно отметить, что анализ Минского не был опровергнут и до сих пор остается весьма существенным Несмотря на ограничения, персептроны широко изучались Теория персептронов является основой для изучения многих других типов искусственных нейронных сетей Рассмотрим в качестве примера трехнейронный персептрон (рис. 2.4), нейроны которого имеют активационную функцию в виде единичного скачка
Рис. 2.4 Персептрон со многими выходами На
Весовые коэффициенты синапсов одного слоя нейронов можно свести в матрицу
где X и Y - соответственно входной и выходной векторы (под вектором понимается вектор-строка), На рис 2 5 представлен двухслойный персептрон, образованный из однослойного добавлением второго слоя, состоящего из двух нейронов Отметим важную роль нелинейности активационной функции, так как, если бы она не обладала данным свойством, результат функционирования любой
Фактически такая
Работа персептрона сводится к классификации (обобщению) входных сигналов, принадлежащих
Каждая полученная область является областью определения отдельного класса Число таких классов для персептрона не превышает
Рис. 2.5. Двухслойный персептрон Например, однослойный персептрон, состоящий из одного нейрона с двумя входами, не может реализовать логическую функцию «Исключающее ИЛИ», т. е. не способен разделить плоскость (двумерное гиперпространство) на две полуплоскости так, чтобы осуществить классификацию входных сигналов по классам А и В (см. табл. 2.1). Таблица 2.1 (см. скан) Логическая функция «Исключающее ИЛИ» Уравнение сети для этого случая:
является уравнением прямой (одномерной гиперплоскости), которая ни при каких условиях не может разделить плоскость так, чтобы точки из множества входных сигналов, принадлежащие разным классам, оказались по разные стороны от прямой (рис. 2.6).
Рис. 2 6. Линейная нераздепимость функции Исключающее ИЛИ Невозможность реализации однослойным персептроном этой функции получила название проблемы «Исключающего ИЛИ». Отметим, что функции, которые не реализуются однослойным персептроном, называются линейно неразделимыми. Решение задач, подпадающих под это ограничение, заключается в применении 2-х и более слойных сетей или сетей с нелинейными синапсами, однако и тогда существует вероятность, что корректное разделение некоторых входных сигналов на классы невозможно. Рассмотрим более подробно алгоритм обучения с учителем персептрона на примере, представленном на рис. 2.4. ШАГ 1. Проинициализировать элементы весовой матрицы небольшими случайными значениями. ШАГ 2. Подать на входы один из входных векторов, которые сеть должна научиться различать, и вычислить ее выход. ШАГ 3. Если выход правильный, перейти на шаг 4. Иначе - вычислить разницу между требуемым и полученным значениями выхода:
Модифицировать веса в соответствии с формулой:
где Очевидно, что если Шаг 4. Цикл с шага 2, пока сеть не перестанет ошибаться. На шаге 2 на разных итерациях поочередно в случайном порядке предъявляются все возможные входные вектора. К сожалению, нельзя заранее определить число итераций, которые потребуется выполнить, а в некоторых случаях и гарантировать полный успех Этот вопрос будет затронут в дальнейшем Сходимость рассмотренной процедуры устанавливается следующими теоремами Теорема 2 1 Класс элементарных персептронов, для которых существует решение для любой задуманной классификации, не является пустым Эта теорема утверждает, что для любой классификации обучающей выборки можно подобрать такой набор (из бесконечного набора) элементарных нейронов, в котором будет осуществлено разделение обучающей последовательности при помощи линейного решающего правила Теорема 2 2 Если для некоторой классификации решение существует, то в процессе обучения персептрона с коррекцией ошибок, начинающегося с произвольного исходного состояния, это решение будет достигнуто в течение конечного промежутка времени Смысл теоремы состоит в том, что если относительно задуманной классификации можно найти набор элементов, в котором существует решение, то в рамках этого набора оно будет достиг нуто за конечный промежуток времени Интересную область исследований представляют много слойные персептроны и персептроны с перекрестными связями однако теория этих систем практически не разработана
|
1 |
Оглавление
|