Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.2. Структура и свойства искусственного нейронаНейрон является составной частью нейронной сети. На рис. 1 2 показана его структура Он состоит из элементов трех типов: умножителей (синапсов), сумматора и нелинейного преобразователя. Синапсы осуществляют связь между нейронами, умножают входной сигнал на число, характеризующее силу связи, (вес синапса). Сумматор выполняет сложение сигналов, поступающих по синаптическим связям от других нейронов, и внешних входных сигналов. Нелинейный преобразователь реализует нелинейную функцию одного аргумента - выхода сумматора. Эта функция называется функцией активации или передаточной функцией
Рис. 1.2 Структура искусственного нейрона нейрона. Нейрон в целом реализует скалярную функцию векторного аргумента. Математическая модель нейрона:
где В общем случае входной сигнал, весовые коэффициенты и смещение могут принимать действительные значения, а во многих практических задачах - лишь некоторые фиксированные значения. Выход Синаптические связи с положительными весами называют возбуждающими, с отрицательными весами - тормозящими. Описанный вычислительный элемент можно считать упрощенной математической моделью биологических нейронов. Чтобы подчеркнуть различие нейронов биологических и искусственных, вторые иногда называют нейроноподобными элементами или формальными нейронами. На входной сигнал нейрона Примеры активационных функций представлены в табл. 1.1 и на рис. 1.3 Таблица 1.1 (см. скан) Функции активации нейронов Одной из наиболее распространенных является нелинейная функция активации с насыщением, так называемая логистическая функция или сигмоид (функция S-образного вида)
При уменьшении а сигмоид становится более пологим, в пределе при
Рис. 1.3 Примеры активационных функций а - функция единичного скачка, б - линейный порог (гистерезис), в - сигмоид (логистическая функция), г - сигмоид (гиперболический тангенс) единичного скачка с порогом
Следует отметить, что сигмоидальная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения Кроме того, она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон
|
1 |
Оглавление
|