Главная > Прикладная статистика: Классификации и снижение размерности
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.4. Оценка качества дискриминации

Как сказано в § 2.1, оценка качества построенного правила классификации является завершающей операцией ДА. Выбор конкретных показателей и методов их оценивания зависит от целей построения правила классификации, от начальных предположений и степени уверенности в них, от выбранного алгоритма и, наконец, от доступного программного обеспечения.

3.4.1. Показатели качества разделения.

В табл. 3.1 дана сводка основных показателей качества дискриминации, там же указано, где в книге можно найти соответствующие разделы. Средняя ошибка входит в две группы показателей (1.2 и 2.1). Показатели (1.3 и 3.1) так же связаны друг с другом. Их сопоставление может быть использовано для прямой проверки применимости модели Фишера. Особое место занимают показатели, требующие численной оценки отношения правдоподобия в каждой точке выборочного пространства (2.2 и 3.2). Если умеем его оценивать, то «первичная» оценка расстояния Бхатачария по обучающей выборке может выглядеть, например, следующим образом:

Таблица 3.1

Смысл слова «первичная» будет ясен из материала следующего пункта.

3.4.2. Методы оценивания.

Хорошо известно, что если применить построенное правило классификации к обучающей выборке, то оценка качества классификации будет в среднем завышена по сравнению с той же оценкой качества по не зависимым от обучения данным. Это означает, что регистрируемые на обучающей выборке значения ошибок и функции потерь будут ниже ожидаемых, а значения расстояний — больше. Укажем основные приемы борьбы с этим завышением качества.

Разбиение имеющихся данных на две части: обучающую и экзаменующую выборки. Это самый простой и убедительный метод. Им следует широко пользоваться, если данных достаточно. Тем более что, если разбиение данных произведено по какому-либо моменту времени, метод позволяет оценивать качество правила, построенного по прошлым данным, в применении к сегодняшним данным. С чисто статистической точки зрения метод разбиения данных на две части расточителен. Поэтому предложен ряд других, более сложных методов, которые полнее используют выборочную информацию.

Метод скользящего экзамена. При этом методе одно из наблюдений отделяется от выборки и рассматривается в качестве экзаменующего наблюдения.

По оставшимся наблюдениям строится правило классификации, которое применяется к выделенному наблюдению. Результат применения регистрируется и оценивается. Наблюдение возвращается в выборку, выделяется следующее наблюдение и т. д. Процесс прекращается через шагов, когда будет перебрана вся выборка. Последовательные оценки, получаемые с помощью скользящего экзамена, несмещены, однако зависимы между собой. Существенная особенность метода - -кратное построение правила классификации. В случае непараметрических оценок пп. 3.2.2 и 3.2.4 это сделать легко — достаточно просто не включать выделенное наблюдение в суммы в формулах (3.10), (3.11) или не учитывать его в окрестности . В случае использования линейной дискриминантной функции, оцениваемой через при коррекции используется формула Бартлетта для обратных симметричных матриц А

которая существенно упрощает расчеты. В общем случае, особенно при отборе переменных, метод скользящего экзамена слишком трудоемок.

Использование обучающей выборки в качестве экзаменационной с последующей поправкой на смещение. Идея метода достаточно проста. Пусть оценивается некоторый параметр . Обозначим его оценку на обучающей выборке и оценку на новой выборке . Пусть далее , а А — некоторая оценка А. Тогда

Предложены различные способы оценки А: аналитические, опирающиеся на предельные соотношения гл. 2, и эмпирические, использующие специальные вычислительные процедуры. Оба подхода описываются ниже.

3.4.3. Аналитические поправки.

Они наиболее просты в вычислительном плане, но существенно опираются на математические предположения проверяемых моделей. Поэтому их следует рассматривать только в качестве первых приближений.

Поправка для оценки расстояния Махаланобиса в модели Фишера. Пусть

Оценка смещена. Несмещенная оценка расстояния Махаланобиса [264]

Поправка для ООК. На основании теоретического рассмотрения модели Фишера и ряда результатов моделирования с различными алгоритмами Раудис Ш. [132] рекомендует при конструировании поправки использовать параметр (см. гл. 2); если — оценка ошибки классификации, полученная на обучающей выборке, то а — оценка ООК может быть приближенно оценена с помощью

3.4.4. Метод статистического моделирования (bootstrap method).

Предложен В. Эфроном [219]. В нем рекомендуется принять обучающую выборку за генеральную совокупность. Из нее производить повторные по параметру i наборы обучающих и экзаменующих выборок и для каждой пары выборок оценивать разность

Среднее арифметическое А, принимается за А. Далее используется формула (3.19).

1
Оглавление
email@scask.ru