Главная > Прикладная статистика: Классификации и снижение размерности
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

14.3.3. Метод корреляционных плеяд.

Задача разбиения признаков на группы часто имеет и самостоятельное значение. Например, в ботанике для систематизации вновь открытых растений делают разбиение набора признаков на группы так, чтобы 1-я группа характеризовала форму листа, 2-я группа — форму плода и т. д. В связи с этим и возник эвристический метод корреляционных плеяд [48, 1511.

Метод корреляционных плеяд, так же как и метод экстремальной группировки, предназначен для нахождения таких групп признаков - «плеяд», когда корреляционная связь, т. е. сумма модулей коэффициентов корреляции между параметрами одной группы (внутриплеядная связь) достаточно велика, а связь между параметрами из разных групп (меж-плеядная) — мала. По определенному правилу по корреляционной матрице признаков образуют чертеж — граф, который затем с помощью различных приемов разбивают на подграфы. Элементы, соответствующие каждому из подграфов, и образуют плеяду.

Рассмотрим корреляционную матрицу , исходных признаков. Нарисуем кружков; внутри каждого кружка напишем номер одного из признаков. Каждый кружок соединяется линиями со всеми остальными кружками; над линией, соединяющей элементы (ребром графа), ставится значение модуля коэффициента корреляции Полученный таким образом чертеж рассматриваем как исходный граф.

Задавшись (произвольным образом или на основании предварительного изучения корреляционной матрицы) некоторым пороговым значением коэффициента корреляции исключаем из графа все ребра, которые соответствуют коэффициентам корреляции, по модулю меньшим

Затем задаем некоторое и относительно него повторяем описанную процедуру. При некотором достаточно большом граф распадается на несколько подграфов, т. е. таких групп кружков, что связи (ребра графа) между кружками различных групп отсутствуют. Очевидно, что для полученных таким образом плеяд внутриплеядные коэффициенты корреляции будут больше , а межплеядные — меньше .

В другом варианте корреляционных плеяд [481 предлагается упорядочивать признаки и рассматривать только те коэффициенты корреляции, которые соответствуют связям между элементами в упорядоченной системе.

Упорядочение производится на основании принципа максимального корреляционного пути все признаков связываются при помощи () линий (ребер) так, чтобы сумма модулей коэффициентов корреляции была максимальной. Это достигается следующим образом: в корреляционной матрице находят наибольший по абсолютной величине коэффициент корреляции, например (коэффициенты на главной диагонали матрицы, равные единице, не рассматриваются).

Рисуем кружки, соответствующие параметрам и и над «связью» между ними пишем значение Затем, исключив находим наибольший коэффициент в столбце матрицы (это соответствует нахождению признака, который наиболее сильно после ) «связан» с и наибольший коэффициент в строке матрицы (это соответствует нахождению признака, наиболее сильно после ) «связанного» с . Из найденных таким образом двух коэффициентов корреляции выбирается наибольший — пусть это будет . Рисуем кружок соединяем его с кружком и проставляем значение Затем находим признаки, наиболее связанные с и выбираем из найденных коэффициентов корреляции наибольший. Пусть это будет Требуем, чтобы на каждом шаге получался новый признак, поэтому признаки, уже изображенные на чертеже, исключаются, следовательно,

Далее рисуем кружок, соответствующий и соединяем его с и т.д. На каждом шаге находятся параметры, наиболее сильно связанные с двумя последними рассмотренными параметрами, а затем выбирается один из них, соответствующий большему коэффициенту корреляции. Процедура заканчивается после шага; граф оказывается состоящим из кружков, соединенных () ребром.

Затем задается пороговое значение а все ребра, соответствующие меньшим, чем , коэффициентам корреляции, исключаются из графа.

Назовем незамкнутым графом такой граф, для которого для любых двух кружков существует единственная траектория, составленная из линий связи, соединяющая эти два кружка. Очевидно, что во втором варианте метода корреляционных плеяд допускается построение только незамкнутых графов, а в первом варианте такое ограничение отсутствует. Поэтому разбиения на плеяды, полученные разными способами, могут не совпадать.

В работе [97] приводятся результаты экспериментальной проверки алгоритмов экстремальной группировки параметров, а также сравнение полученных результатов с результатами, даваемыми методом корреляционных плеяд.

Эксперимент проводился на физиологическом материале: исследовались влияния шумов и вибрации на работоспособность и самочувствие. Регистрировались 33 признака из них 7 параметров, характеризующих температуру тела; 4 — кровяное давление; 14 — аудиометрию (порог слышимости на заданной частоте); 2 — дыхание; 4 — силу и выносливость рук и 2 (особенных параметра) — пульс и скорость реакции.

С точки зрения физиолога «идеальным» было бы разбиение, при котором все характеристики температур образовали бы отдельную группу; параметры, характеризующие давление — свою отдельную группу и т.д., обособленные параметры образовали бы группы, состоящие из одного элемента. Наиболее близким к «идеальному» оказалось разбиение, полученное вторым алгоритмом экстремальной группировки, хотя алгоритм и присоединяет обособленные параметры к другим группам. Наименее точные (среди трех сравниваемых алгоритмов) результаты дал метод корреляционных плеяд.

Исторически раньше возникшие различные варианты метода корреляционных плеяд являются в действительности несколько упрощенными эвристическими версиями более совершенных в математическом плане алгоритмов исследования структуры связей между компонентами многомерного признака, использующими графы-деревья (см. [12, гл. 4).

1
Оглавление
email@scask.ru