Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Если макросистема находится в неравновесном состоянии, то она самопроизвольно будет переходить в состояние с большей вероятностью — равновесное. Вместе с тем, согласно второму началу термодинамики все самопроизвольные процессы в замкнутых макросистемах сопровождаются возрастанием энтропии. Поэтому можно ожидать, что между энтропией Для нахождения этой связи рассмотрим аналогично примеру на стр. 77 необратимый процесс расширения идеального газа в пустоту. Пусть данный газ первоначально находится в объеме В данном случае (газ идеальный) работу газ не совершает Поскольку энтропия — функция состояния, то ее приращение в процессе где и приращение энтропии (3.14) можно записать как Поскольку вероятность макросистемы пропорциональна ее статистическому весу, т.е. и мы приходим к знаменитой формуле Больцмана из которой и следует (3.17). Теперь предположим, что макросистема состоит из двух практически не взаимодействующих подсистем, одна из которых находится в состоянии 1 с энтропией Число способов (микросостояний), которыми может реализоваться рассматриваемое состояние макросистемы, равно произведению чисел способов, т.е. Отсюда следует, что Принцип возрастания энтропии со статистической точки зрения привел Больцмана к фундаментальному выводу: все замкнутые макросистемы стремятся переходить от состояний менее вероятных к более вероятным. При этом сама энтропия С этим связана и необратимость реальных самопроизвольных тепловых процессов: они протекают так, что беспорядок в макросистеме увеличивается. С этим связан и тот факт, что любой вид энергии переходит в конце концов во внутреннюю энергию, т.е. в состояние, при котором «хаос» в макросистеме максимален. Это состояние является равновесным, его энтропия Каково бы ни было первоначальное состояние макросистемы (например, газа), будучи теплоизолированной она неизбежно переходит в состояние, при котором распределение молекул по скоростям будет максвелловским, а во внешнем поле еще и больцмановским. Энтропия и судъба Вселенной. Принцип возрастания энтропии приводит к мысли (Клаузиус), что энтропия Вселенной приближается к максимуму, по достижении которого во Вселенной прекратятся какие бы то ни были процессы. Должно наступить абсолютно равновесное состояние, в котором никакие процессы уже невозможны. Наступит тепловая смерть Вселенной. В связи с этой концепцией Больцманом была высказана так называемая флуктуационная гипотеза. Больцман не отрицал применимость принципа возрастания энтропии ко всей Вселенной в целом (а такие сомнения высказывались), но он обратил внимание на статистическую природу этого закона. Поэтому отступления от термодинамического равновесия Вселенной флуктуации — не только возможны, но и неизбежны. Сейчас мы имеем дело с гигантской флуктуацией. Она должна исчезнуть. Тогда наступит тепловая смерть Вселенной. Однако через некоторое время снова возникнет гигантская флуктуация, и Вселенная выйдет из состояния тепловой смерти. Затем опять все повторится, и так без конца. В настоящее время установлено, что вывод о «тепловой смерти» Вселенной и первоначальные попытки его опровержения являются несостоятельными, поскольку в них не учитывалось влияние тяготения. Выяснилось, что из-за тяготения однородное изотермическое распределение вещества во Вселенной не соответствует максимуму энтропии, поскольку такое состояние не является наиболее вероятным. Вселенная нестационарна — она расширяется, и первоначально однородное вещество распадается под действием сил тяготения, образуя скопления галактик, сами галактики, звезды и т.д. Эти процессы происходят с ростом энтропии — в соответствии со вторым началом термодинамики. И ниоткуда не следует, что эти процессы приведут к однородному изотермическому состоянию Вселенной, т.е. к «тепловой смерти» Вселенной.
|
1 |
Оглавление
|