Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
В этом параграфе мы рассмотрим явления переноса в газах с молекулярно-кинетической точки зрения. Соответствующие расчеты будут иметь оценочный характер. Еще раз напомним (об этом уже говорилось ранее), что оценочный подход — это то, с чего обычно начинается создание теории. Главное достоинство такого подхода состоит в простоте и акценте на физической стороне явления, не заслоненной громоздкими вычислениями и преобразованиями. Разумеется, оценочный подход ни в коей мере не может претендовать на получение точных результатов, но различие заключается только в числовых коэффициентах. Итак, будем исходить из предельно упрощенной модели, которой мы уже пользовались ранее и убедились, что она дает неплохие результаты. Повторим: ввиду полной хаотичности теплового движения молекул будем считать, что молекулы движутся по трем направлениям где Далее будем считать, что через интересующую нас площадку Теперь перейдем к рассмотрению с помощью этой модели явлений переноса и начнем с вывода общего уравнения переноca, не зависящего от времени. Общее уравнение переноса. Пусть величина Пусть величина дились только к переносу величины Благодаря малости С учетом этой формулы выражение (6.19) запишем так: Это и есть общее уравнение переноса для любой величины Применим это уравнение к трем наиболее интересным явлениям переноса, связанным с диффузией, вязкостью и теплопроводностью. Диффузия. Ограничимся рассмотрением самодиффузии, т.е. процессом перемешивания (взаимопроникновения) молекул одного сорта. Макроскопически самодиффузию наблюдать нельзя: из-за тождественности молекул она не может проявляться ни в одном явлении. Для наблюдения этого процесса часть молекул газа надо как-то \»пометить\». Практически это можно сделать с помощью так называемых «меченых» атомов: смесь газов берут из двух изотопов одного и того же элемента, один из которых радиоактивен. Тогда процесс диффузии можно наблюдать, регистрируя радиоактивное излучение радиоизотопа. Можно также взять смесь двух различных газов, молекулы которых почти одинаковы по массе и размерам (такие, например, как Чтобы отсутствовали газокинетические потоки и перемешивание молекул происходило только за счет диффузии, необходимо (так мы и будем считать), чтобы суммарная концентрация Пусть концентрация молекул 1 -го сорта зависит от координаты Рис. 6.9 Это «свойство» и переносится. Если через площадку Сравнив это выражение с эмпирической формулой (6.9), находим, что коэффициент самодиффузии Рассуждения, приведшие нас к формуле (6.22), в равной мере справедливы и для другой компоненты смеси. Значит, коэффициент Более строгий расчет приводит к такой же формуле для Puc. 6.10 где Более точный расчет дает несколько большее значение для числового коэффициента: не Теплопроводность. В этом явлении величиной Для упрощения этой формулы введем удельную теплоемкость Из сравнения этого выражения с формулой (6.12) видим, что теплопроводность где, повторим, Анализ коэффициентов переноса. Прежде всего выпишем для удобства сопоставления и анализа все три коэффициента рассмотренных явлений переноса: На первый взгляд этот вывод кажется странным и в свое время послужил поводом к тому, чтобы подвергнуть сомнению развиваемые молекулярно-кинетические представления. Однако при более внимательном рассмотрении выяснилось, что здесь все в порядке. Действительно, уменьшая давление, мы уменьшаем концентрацию молекул, но при этом одновременно растет Все так, и тем не менее, уменьшая давление Уравнения переноса, зависящие от времени. Приведенные выше расчеты и результаты относятся к так называемым стационарным задачам, когда распределение интересующей нас величины Для решения подобных уравнений необходимо знать начальные и граничные условия. Если они заданы и известен коэффициент Поведение ультраразреженного газа существенно отличается от поведения газов при обычных условиях. В условиях вакуума теряет смысл говорить о давлении одной части газа на другую, а это значит, что внутреннее трение отсутствует. Имеет смысл говорить только о силе трения, испытываемого движущимся телом. Теряет также смысл введенное нами понятие теплопроводности, как процесса передачи энергии от одного слоя газа к другому (тепловая диффузия). Следует говорить только о теплообмене между телами. Из сказанного следует, что при выводе уравнений переноса величины Теперь должно быть понятным, почему в опыте с крутильными колебаниями диска 1 (рис. 6.11, где диск 2 неподвижен) в сосуде Pис. 6.11 концентрации Становится также понятным, почему и насколько надо эвакуировать объем между стенками сосуда Дюара, чтобы как можно более снизить коэффициент теплопроводности
|
1 |
Оглавление
|