Главная > Основы теории обработки изображений
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

4.1. Линейные скалярные и векторные фильтры Калмана

Рассмотрим сначала относительно простую задачу фильтрации скалярной марковской последовательности, заданной авторегрессионной линейной моделью

,                         (4.1)

ее наблюдения имеют вид

                                         (4.2)

где – скалярные известные величины;  – стандартная гауссовская возмущающая последовательность;   – независимые гауссовские величины с нулевым средним и дисперсиями  (шум наблюдений). На основе наблюдений  требуется найти наилучшую оценку элемента .

         Рекуррентное решение этой задачи дается известным фильтром Калмана [3, 31]:

                           (4.3)

где  .

         Характерно, что коэффициенты фильтра  вычисляются рекуррентно и могут быть найдены заранее, так как не зависят от наблюдений. В случае однородности моделей (когда их параметры постоянны) коэффициент  сходится к предельному значению P.  Это предельное значение, т. е. стационарный вариант фильтра можно использовать с самого начала фильтрации, что ухудшит качество фильтрации только на начальном ее этапе.

         Описанный  фильтр легко обобщается на векторные модели сообщения (4.1) и наблюдений (4.2), когда - векторы, а - матрицы. В этом  случае изменения в уравнениях (4.3) связаны только с переходом к матричным операциям:

                      (4.4)

где  .                    (4.5)

Эти уравнения уже можно использовать для фильтрации отдельных плоских И, представляя их как последовательность вектор-строк (или вектор-столбцов), описываемую авторегрессионной векторной моделью.

         Отметим, что при нелинейных моделях сообщения и наблюдений путем их линеаризации возможно получение фильтров, аналогичных (4.3) и (4.4), но они уже не будут строго оптимальными, как в линейном случае.

 

 

1
Оглавление
email@scask.ru