Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 1.2. КОНДЕНСАТОРЫКонденсаторы, как и резисторы, являются одним из наиболее массовых элементов электронных цепей. Электрические характеристики, конструкция и область их применения зависят от типа диэлектрика между его обкладками. По виду диэлектрика конденсаторы постоянной емкости можно подразделить на пять групп: 1) с газообразным диэлектриком (воздушные, газонаполненные, вакуумные); 2) с жидким диэлектриком; 3) с твердым неорганическим диэлектриком (керамические, стеклокерамические, стеклоэмалевые, стеклопленочные, тонкослойные из неорганических пленок, слюдяные); 4) с твердым органическим диэлектриком (бумажные, металлобумажные, фторопластовые, полиэтиленфталатные); 5) с оксидным диэлектриком (электролитические, оксидно-полупроводниковые, оксидно-металлические), выполняемые с использованием алюминия, титана, ниобия, сплавов тантала и ниобия. У конденсаторов различают номинальное Допускаемое отклонение емкости обычно задается в процентах:
Изменения значения емкости в зависимости от температуры характеризуются температурным коэффициентом емкости (ТКЕ), который иногда обозначают
Этот коэффициент показывает изменение емкости при изменении на 1 К температуры окружающей среды. В зависимости от материала диэлектрика ТКЕ может быть положительным, нулевым или отрицательным. Его значение, определенное на конкретной частоте, указывается в маркировке конденсатора с помощью букв и цифр или цветного кода. По допускаемому отклонению ТКЕ от нормированного значения конденсаторы подразделяются на два класса: А и Б. У класса А отклонение в
При последовательном соединении — из уравнения
Подбирая номиналы и ТКЕ, а также комбинируя последовательное и параллельное соединения можно обеспечить нулевой ТКЕ, что применяется при создании измерительных конденсаторов. Упрощенные эквивалентные схемы конденсаторов содержат емкость
Рис. 1.7. Эквивалентные схемы конденсатора с последовательным (а) и последовательно-параллельным (б) включением элементов Сопротивление При использовании эквивалентной схемы (рис. 1.7,а) сопротивление конденсатора
где Из этого уравнения видно, что на частотах, больших Следует обратить внимание на то, что значения конденсатора и сопротивления потерь, измеренные по последовательной и параллельной схемам включения этих элементов, различаются между собой. Это вытекает из правила эквивалентного преобразования последовательного соединения сопротивлений в параллельное. Отличия между значениями тем больше, чем больше тангенс угла потерь Тангенс угла потерь характеризует электромагнитные потери в конденсаторе и определяется как отношение его активной Р к реактивной Q мощности: В отличие от емкости тангенс угла потерь не зависит от схемы, по которой проводились измерения: При воздействии на конденсатор напряжения в нем возникают электрические и акустические шумы. Электрические шумы вызваны частичными разрядами, мерцаниями емкости и пьезоэлектрическими эффектами (в керамических конденсаторах). Акустические шумы конденсатора обусловлены вибрацией обкладок под действием кулоновских и электродинамических сил. Частичные разряды — местные разряды внутри изоляции и на поверхности, не вызывающие полного пробоя межэлектродного промежутка. Они имеют вид или коронных разрядов, или частичных пробоев отдельных элементов изоляции, которые могут самовосстанавливаться. Мерцание емкости — скачкообразное изменение емкости, имеющее случайный характер. Оно обусловлено тем, что у ряда конденсаторов края обкладок состоят из отдельных островков. При приложении внешнего напряжения между ними и сплошной частью обкладки возникают микродуги, соединяющие их вместе и меняющие емкость. Спектр этих шумов широкий. Изменения емкости могут достигать Пьезоэлектрические шумы возникают, как правило, в результате механических воздействий и имеют характер импульсов. При создании точных устройств с заряжаемыми и разряжаемыми конденсаторами необходимо учитывать явление адсорбции (замедленной поляризации и деполяризации). Сущность его заключается в том, что конденсатор не удается полностью зарядить или разрядить за малый промежуток времени из-за медленных перемещений зарядов в толще диэлектрика. Так, если обкладки заряженного конденсатора замкнуть накоротко на небольшой промежуток времени, а потом разомкнуть, то через некоторый промежуток времени на обкладках появится остаточное напряжение
Коэффициент Его значение при В связи с тем что слой оксида обладает вентильными свойствами, электрические конденсаторы полярны. Подключение напряжения к ним должно вестись с учетом указанной на электродах полярности. В противном случае конденсатор выйдет из строя. Малая толщина диэлектрика, большая диэлектрическая проницаемость и возможность создания надежных оксидных слоев на большой площади позволяют изготовлять электрические конденсаторы большой емкости. Для электрических конденсаторов важным параметром является ток утечки
где К и Различают полные и сокращенные условные обозначения конденсатора. Полное обозначение состоит из четырех элементов, например Сокращенное обозначение состоит из трех элементов. Первый — буквы, характеризующие подкласс коденсаторов (К — постоянной емкости; КТ — подстроечные; КП — переменной емкости; КС — конденсаторные сборки); второй — цифры, характеризующие тип диэлектрика и назначение конденсатора, т. е. его группу; третий — порядковый номер разработки, например
Рис. 1.8. Напряжение на конденсаторе при определении коэффициента Для обозначения номинальной емкости, допустимого отклонения, группы по температурной стабильности применяют кодированное обозначение. Номинальная емкость характеризуется цифрой и буквой, указывающей на единицу измерений и представляющей собой множитель. Так, буквы В обозначении ТКЕ буквы означают его знак (М — минус, П — плюс, МП — близкое к нулю), а цифры указывают значение ТКЕ, например Для обозначения ТКЕ часто используют цветной код. Цвет покрытия корпуса указывает на знак ТКЕ, а цвет кодировочного знака — на его значение, например: синий и серый цвета корпуса — положительный ТКЕ; голубой — близкий к нулю; красный и зеленый — отрицательный ТКЕ; серый корпус с красным знаком — Таблица 1.2
Продолжение табл. 1.2
В изменениях к ГОСТ 11076—69 предусмотрены кодированные обозначения ТКЕ латинскими буквами, например: Аналогично резисторам номинальные емкости конденсаторов соответствуют рядам предпочтительных значений, на которые имеются ГОСТы.
|
1 |
Оглавление
|