Главная > Многообразие геометрии
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

§ 3. Различные направления топологии

1. Общая топология. Общая топология существует с тех пор, когда в процессе развития канторовской теории множеств была создана теория точечных множеств в евклидовом пространстве. Евклидово пространство — это пространство, в котором введено расстояние, поэтому оно как множество точек приобретает свою топологию.

Благодаря этому были разработаны понятия замкнутого и открытого множеств окрестности, точки накопления. Эти понятия являются фундаментальными в разных областях математики, в частности в анализе.

Теория точечных множеств в евклидовом пространстве послужила исходным пунктом в развитии общей идеи топологического пространства. Это началось с работ Фреше (1878—1973) 1907 года, посвященных -пространствам. Фреше, занимаясь исследованиями в области функционального анализа, определил пространство при помощи понятия сходимости, которое составляет ядро всей топологии. Заслуга Фреше в том, что он выдвинул основные положения абстрактного пространства. Это был отход от привычных рассмотрений в евклидовом пространстве. Точка абстрактного пространства — это уже не точка в том смысле, как это понимают в евклидовой геометрии. Если речь идет о множестве, в котором определено понятие сходимости, то это уже топологическое пространство. Абстрактная теория пространства постепенно слилась с тем, что определяется сейчас как теория топологических пространств. Абстрактизация идеи пространства открыла путь формированию многих важных понятий в различных разделах математики.

Мы приведем имена лишь нескольких математиков, которые внесли принципиальный вклад в разработку фундаментальных положений топологии.

В 1909 году Рис (1880—1956) исследовал предельные точки множества. В 1914 году Хаусдорф (1868—1942) пришел к понятию

системы окрестностей. В 1922 году Куратовский (р. 1896) ввел аксиоматику замыкания, в 1925 году Александров (р. 1896) построил теорию открытых множеств, а в 1927 году Серпиньский (1882—1969) — теорию замкнутых множеств.

Около сорока лет назад в противоположность нынешнему состоянию алгебраической топологии алгебраический аппарат использовался робко. В то время для изучения геометрических фигур применялись весьма наглядные методы, которые составляли геометрическую топологию теории множеств. Исследования велись в теории кривых линий, теории размерности, что в настоящее время включается в общую топологию.

2. Комбинаторная топология. При исследовании геометрических свойств мнргообразий Пуанкаре пользовался разбиением многообразия на элементарные симплексы и, обратно, создавал из симплексов сложные комбинаторные структуры. При этом Пуанкаре применял аппарат введенных им групп гомологий. Дальнейший прогресс комбинаторной топологии связан с такими значительными результатами, как результаты Хопфа (1895—1971), теоремы о неподвижных точках отображения Лефшеца (1884—1972), теоремы двойственности Пуанкаре и Александера. Эти геометрические теории, представляя собой часть комбинаторной топологии, являются ветвью алгебраической топологии. Примерно с 1940 года она получила значительное развитие в связи с исследованиями линейных образов комбинаторных структур, где Уайтхедом (1904—1960) были получены замечательные результаты. Эта дисциплина стала называться -топологией.

О положительном решении общего предположения Пуанкаре уже говорилось выше. Затрагивая вопрос определения комбинаторных многообразий, мы не говорили об известном основном предположении комбинаторной топологии, которое в 1961 году Мазуром и Милнором (р. 1931) было опровергнуто.

Основное предположение комбинаторной топологии (Hauptvermutung). В начале XX века комбинаторная топология особенно сильное развитие получила в Германии, и подавляющее большинство работ публиковалось на немецком языке. Упоминаемая здесь основная гипотеза также впервые была сформулирована на немецком языке. И по сей день в различных трудах ее часто называют по-немецки Hauptvermutung. Формулировка этого предположения такова: если полиэдры двух комплексов К к К гомеоморфны, то можно подразделить их таким образом, что полученные в результате этого комплексы являются равными комплексами.

Комплексы некоторые подразделения которых равны, называются комбинаторно эквивалентными. При определении комбинаторного многообразия, казалось бы, естественно потребовать, чтобы полиэдр звезды и -мерный симплекс были гомеоморфны. Однако в общем случае остается неизвестным, можно ли считать равными Поэтому удобнее требовать, чтобы были комбинаторно эквивалентны.

3. Алгебраическая топология. Алгебраическая топология представляет собой область геометрии, цель которой состоит в установлении топологических инвариантов на основе

применения теории групп. Алгебраическая топология считается ведущей областью топологии. Упоминавшаяся выше теория гомологий также относится к этой области геометрии. К числу других достижений алгебраической топологии относятся введенные в работах Александера и Колмогорова (р. 1903) группы когомологий.

В более позднее время алгебраическая топология сделала резкий скачок вперед благодаря работам Стинрода (1910—1971) по теории когомологий, опубликованным в 1947 году, и исследованию Серром (р. 1926) в 1951 году спектральных последовательностей.

4. Дифференциальная топология. Есть область топологии, объектом исследований которой являются дифференцируемые многообразия. Суть дифференцируемого многообразия состоит в возможности рассмотрения дифференцируемых функций, заданных на этом многообразии. Если о дифференцируемых многообразиях говорить конкретнее, то нужно прежде всего вспомнить, что каждая точка многообразия обладает окрестностью гомеоморфной открытому диску (или, что все равно, всему евклидову пространству). Координаты, заданные в евклидовом пространстве, посредством гомеоморфизмов переносятся в окрестность каждой точки многообразия. Это так называемые локальные координаты. Так как точка многообразия принадлежит одновременно многим окрестностям то ей соответствует столько же различных систем локальных координат. Многообразие дифференцируемоу если функции преобразования от одной локальной системы координат к другой являются дифференцируемыми.

Вероятно, следовало привести конкретные формулы, однако суть, думается, может быть ясна и без этого.

Непосредственное впечатление от дифференцируемого многообразия отражено в том, что часто применяется термин «гладкое многообразие». Гладкость состоит, собственно, в том, что окрестность каждой точки можно расширить дифференцируемым образом. Гладкие кривы 1 поверхности, такие, как сфера или поверхность тора представляют собой дифференцируемые многообразия.

Рис. 106

В дифференциальной топологии, таким образом, можно рассматривать не только непрерывные относительно точек многообразия отображения, но и дифференцируемые отображения. Если к общим условиям гомеоморфизма одного многообразия на другое добавить условия дифференцируемости, то получим изоморфизм их гладких структур, или так называемый диффеоморфизм.

Другими словами, гладкие структуры диффеоморфных между собой дифференцируемых

многообразий равны. Такие многообразия являются главным объектом исследования дифференциальной топологии. Этот раздел геометрии связан с изучением глобальных свойств многообразий, и мы здесь не будем специально рассматривать такие вопросы дифференциальной геометрии, как кривизна и т. п.

Фундаментальные исследования в дифференциальной топологии были проведены Уитни (р. 1907) в 1930 году. Затем активность исследований в этой области несколько снизилась.

В 1952 году Том (р. 1923), лауреат филдсовской премии 1958 года, опираясь на теорию кбгомологий и гомотопических групп, построил теорию кобордизмов. Недавно он разработал ставшую широко известной теорию катастроф.

В 1956 году Милнором были обнаружены удивительные особенности дифференциальной структуры, присущие семимерной сфере Суть отбытия Милнора, которое явилось совершенно неожиданным не только с геометрической точки зрения, но и с точки зрения анализа, в двух словах заключается в том, что существуют гладкие семимерные сферы которые между собой гомеоморфны, но не диффеоморфны. Доказательство этого факта основано на предварительном изучении свойств и величин, сохраняющихся при диффеоморфизмах, последующее сравнение которых привело к выводу о том, что на семимерной сфере есть различные дифференциальные структуры.

В дифференциальной топологии был получен ряд глубоких теорем, которые составили ей славу одной из самых замечательных

областей всей математики. Ряд достижений дифференциальной топологии связан с комбинаторной топологией. Подтверждением этого является, например, теорема о том, что любое дифференцируемое многообразие есть комбинаторное многообразие.

5. Геометрическая топология. Это название, да и сам раздел топологии отнюдь не является общепризнанным. В исследовании топологических свойств геометрических фигур существует направление, в котором не применяется алгебраический метод, как это было при исследовании комбинаторных и гладких структур, и изучение геометрических свойств проводится непосредственно. Этим и объясняется название «геометрическая топология». Основной объект изучения геометрической топологии — это необычные геометрические фигуры в евклидовом пространстве Слова «необычные геометрические фигуры» употреблены здесь потому, что, с одной стороны, речь идет о необычных фигурах, применить к которым алгебраические методы особенно трудно, а с другой стороны, эти фигуры достаточно геометричны, чтобы иметь о них на: глядное представление. Направление, которое исследует необычные фигуры, можно было бы назвать геометрической патологией фигур.

Инструмент исследования в данном случае не представляет собой методически разработанную теорию. Изучение тех или иных геометрических фигур состоит в непосредственном

наглядном восприятии с последующим проведением цепочки строго обоснованных рассуждений. Поэтому здесь необходимы острота восприятия и правильность логического вывода. Из последних достижений в изучении патологических (диких) геометрических фигур можно, например, отметить исследования трехмерных многообразий. Проблема топологической классификации трехмерных многообразий, как это явствует уже из рассуждений относительно гипотезы Пуанкаре, далека от своего решения и представляется крайне сложной. Именно со стороны гипотезы Пуанкаре к задаче классификации подошли вплотную многие исследователи, получив значительные результаты. Хорошо известны исследования Папакирвякопулоса (1914—1976), в результате которых этот «уважаемый Пап» решил в 1957 году проблему Дэна (1878—1952) о сфере. Теорема о сфере формулируется следующим образом: если трехмерное ориентируемое многообразие с (двумерная гомотопическая группа), то существует вложенная в нестягиваемая двумерная сфера Эта сфера 52 как раз и обеспечивает нетривиальность двумерной гомотопической группы Эта теорема вскрывает еще одну связь между комбинаторной и алгебраической топологией. Надо сказать, что многие результаты одной области могут быть в определенной степени взаимно использованы в смежной области, хотя в каждом конкретном случае существо вопроса подлежит непосредственной проверке.

Что касается только что упомянутой проблемы, то о ее решении, которое опиралось на ряд вспомогательных лемм, заявил еще

в 1910 году, когда он занимался изучением геометрии трехмерных многообразий. Однако вскоре Кнезер (р. 1898) и другие указали на пробелы в приведенном доказательстве. И только гораздо позже, в 1957 году, было получено окончательное доказательство.

В вопросах построения трехмерных многообразий из более простых многообразий Кнезером была предложена важная теорема, которая в 1962 году была улучшена Милнором. Упоминая об этих теоремах, мы, однако, из-за их сложности не приводим здесь даже формулировок.

Из работ, посвященных изучению «диких» многообразий, следует также отметить последовавшую за работами Антуана 1921 года работу Александера 1924 года, в которой он предложил конструкцию так называемой рогатой сферы. Рогатая сфера Александера, которая изображена на рис. 107, непривычная, сложная для восприятия дикая фигура. В дальнейшем исследования в этом направлении продолжены Столлингсом, Бингом (р. 1914) и другими.

Итак, мы дали общий обзор основных областей топологии. Эти области, безусловно, не имеют между собой резких границ. Так, комбинаторная топология очень тесно связана как с геометрической, так и с дифференциальной топологией. В каждой из указанных областей применяется аппарат алгебраической топологии.

Далее следует подчеркнуть, что топологические методы находят применение в разных областях математики. Так, хотя мы почти не затрагивали проблемы классификации геометрических фигур, заметим, что здесь имеется много вопросов топологического характера. Достаточно вспомнить о проблеме узлов, которая является частным случаем более общей проблемы вложения многообразий в евклидово пространство или в какое-нибудь другое многообразие. В качестве простого примера можно указать на топологическую задачу размещения замкнутой кривой линии — окружности — на замкнутых кривых поверхностях рода 1, 2 и т. д.

Рис. 107

Топология — это современная ветвь математики, и изложение содержания любой из ее областей неизбежно приводит к обсуждению острых проблем, касающихся современного состояния математики и перспектив ее развития. Однако поскольку мы вынуждены ограничиться кратким описанием лишь некоторых самых общих математических принципов и идей, то очень многое пришлось сократить до минимума или опустить вообще.

Categories

1
Оглавление
email@scask.ru