ЧАСТЬ III. СИСТОЛИЧЕСКИЕ ПРОЦЕССОРЫ И ОПТИЧЕСКИЕ ЛОГИЧЕСКИЕ МАТРИЦЫ
Глава 7. ОПТИЧЕСКОЕ УМНОЖЕНИЕ МАТРИЦ
С. Кэртрайтх, Исследовательский институт
Университета г. Дайтона, Отделение прикладной физики, Университет г. Дайтона, Дайтон, шт. Огайо
7.1. Введение
Оптические вычисления, под которыми подразумевают выполняемые оптическими методами операции с дискретными числовыми данными, являются новинкой в долгой истории развития оптической обработки сигналов. Утверждения о том, что оптические методы могут успешно конкурировать и теоретически превзойти по своим возможностям электронные методы обработки данных, впервые привлекли серьезное внимание в середине 1970-х гг. [1, 2], а в последнее время в этом направлении возник настоящий шквал публикаций. Сначала может показаться, что электромагнитные поля оптического диапазона непригодны для реализации цифровой логики, так как они распространяются линейным и непрерывным образом, в то время как поток электронов в цепи может быть просто преобразован в дискретные двоичные уровни. Однако имеются три свойства оптики, которые делают ее привлекательной для цифровых вычислений. Первое — это широкая полоса частот оптических источников, которая может для полупроводниковых лазеров достигать гигагерц. Второе — это широкая полоса пространственных частот. Двумерная оптическая система может иметь крайне большое число элементов, разрешающих изображение, каждый из которых можно рассматривать как отдельный канал связи, а все они параллельно передают сигнал в одной и той же системе. В случае некогерентного освещения все разрешающие ячейки оптической системы являются взаимно независимыми. При освещении когерентным светом каналы являются связанными между собой, что приводит к исключительно высокой степени организации межзлементных соединений. Третьей, относящейся к оптическим соединениям, характеристикой является отсутствие интерференции при распространении сигналов, что иногда описывают как «возможность пересечения оптических проводов». Два оптических поля могут распространяться друг через друга, не оказывая взаимного влияния. Эти
характеристики дают возможность обрабатывать данные при больших скоростях и с недостижимым для электронных устройств уровнем организации связи между различными элементами.
Чтобы воспользоваться указанными преимуществами оптики, недостаточно заменить электронные компоненты на оптические. Фотон не является просто прозрачным электроном. Должны быть найдены специальные способы работы с данными, позволяющие использовать эти преимущества оптики и оптических элементов.
Обработка данных, как можно полагать, осуществляется на трех уровнях составных компонент компьютера. Простейший — это уровень вентилей, в которых двоичные переключатели осуществляют булевы логические операции. Исследования на данном уровне концентрировались на разработке оптических бистабильных устройств, образующих вентили [3], и оптических методах образования соединений между оптическими или электронными логическими вентилями [4] - Наивысший уровень — это уровень процессора, на котором в едином узле выполняются целые алгоритмы. Традиционные оптические процессоры работают именно на данном уровне, выполняя, например, преобразование Фурье за один проход света через линзы. На уровне регистра осуществляется синергетическая обработка чисел и блоков чисел. Этот уровень организации обработки данных превосходит просто эксплуатацию набора вентилей, но операции достаточно просты, и они могут быть сгруппированы так, чтобы образовать большое число операций более высокого уровня.