электронный) не работает естественным образом с плавающей запятой, так же как с различающимися по знаку или комплексными числами. Все эти возможные случаи должны выполняться с помощью специального кодирования (уменьшающего достигаемую на практике точность вычислений для заданного I) и параллельной обработки положительных и отрицательных действительных и мнимых чисел.
Все процессоры характеризуются тем, что чем больше объем задачи, тем быстрее они работают. Например, умножители матрицы на вектор (за одним исключением) работают со скоростью в десятки мегаопераций в секунду, характерной для небольших по объему задач. Процессоры умножения матрицы на матрицу работают со скоростями порядка гигаопераций в секунду, что характерно для задач большего масштаба. Очевиден выигрыш в быстродействии, получаемый для параллельной обработки. Более неопределенной характеристикой является абсолютная величина быстродействия. Представленные здесь цифры являются лишь оценками, но они действительно отражают общие свойства оптических вычислений. За небольшим числом исключений имеется очень небольшая разница (менее чем на порядок по величине) между разными видами оптических процессоров, используемых для решения заданной задачи. Возможности оптических процессоров, как представляется, достаточно жестко ограничены определенными скоростями. При сравнении с возможностями электронных процессоров скорости вряд ли произведут на читателя глубокое впечатление. На момент написания книги на промышленно освоенных электронных устройств удается достичь скоростей около 50 мегаопераций в секунду. Разрабатываемые в настоящее время умножители матрицы на вектор не позволят превзойти эту величину. Умножители матрицы на матрицу демонстрируют существенно более высокие возможности.