Главная > Теория вероятностей
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.6. Числовые характеристики системы двух случайных величин. Корреляционный момент. Коэффициент корреляции

В главе 5 мы ввели в рассмотрение числовые характеристики одной случайной величины  - начальные и центральные моменты различных порядков. Из этих характеристик важнейшими являются две: математическое ожидание  и дисперсия .

Аналогичные числовые характеристики - начальные и центральные моменты различных порядков - можно ввести и для системы двух случайных величин.

Начальным моментом порядка ,  системы  называется математическое ожидание произведения  на :

.                                                                        (8.6.1)

Центральным моментом порядка  системы  называется математическое ожидание произведения -й и -й степени соответствующих центрированных величин:

,                                           (8.6.2)

где , .

Выпишем формулы, служащие для непосредственного подсчета моментов. Для прерывных случайных  величин

,                                                  (8.6.3)

,                                            (8.6.4)

где вероятность того, что система  примет значения , а суммирование   распространяется по всем возможным значениям случайных величин , .

Для непрерывных случайных величин:

,                                                (8.6.5)

,                               (8.6.6)

где  - плотность распределения системы.

Помимо  и , характеризующих порядок момента по отношению к отдельным величинам, рассматривается еще суммарный порядок момента , равный сумме показателей степеней при  и . Соответственно суммарному порядку моменты классифицируются на первые, вторые и т. д. На практике обычно применяются только первые и вторые моменты.

Первые начальные моменты представляют собой уже известные нам математические ожидания величин  и , входящих в систему:

Совокупность математических ожиданий  представляет собой характеристику положения системы. Геометрически это координаты средней точки на плоскости, вокруг которой происходит рассеивание точки .

Кроме первых начальных моментов, на практике широко применяются еще вторые центральные моменты системы. Два из них представляют собой уже известные нам дисперсии величин  и :

характеризующие рассеивание случайной точки в направлении осей  и .

Особую роль как характеристика системы играет второй смешанный центральный момент:

,

т.е. математическое ожидание произведения центрированных величин.

Ввиду того, что этот момент играет важную роль в теории, введем для него особое обозначение:

.                                    (8.6.7)

Характеристика  называется корреляционным моментом (иначе — «моментом связи») случайных величин , .

Для прерывных случайных величин корреляционный момент выражается формулой

,                                    (8.6.8)

а для непрерывных - формулой

.                                     (8.6.9)

Выясним смысл и назначение этой характеристики.

Корреляционный момент есть характеристика системы случайных величин, описывающая, помимо, рассеивания величин  и , еще и связь между ними. Для того чтобы убедиться в этом, докажем, что для независимых случайных величин корреляционный момент равен нулю.

Доказательство проведем для непрерывных случайных величин. Пусть ,  - независимые непрерывные величины с плотностью распределения . В  8.5 мы доказали, что для независимых величин

.                                                              (8.6.10)

где ,  - плотности распределения соответственно величин  и .

Подставляя выражение (8.6.10) в формулу (8.6.9), видим, что интеграл (8.6.9) превращается в произведение двух интегралов:

.

Интеграл

представляет собой не что иное, как первый центральный момент величины , и, следовательно, равен нулю; по той же причине равен нулю и второй сомножитель; следовательно, для независимых случайных величин .

Таким образам, если корреляционный момент двух случайных величин отличен от нуля, это есть признак наличия зависимости между ними.

Из формулы (8.6.7) видно, что корреляционный момент характеризует не только зависимость величин, но и их рассеивание. Действительно, если, например, одна из величин  весьма мало отклоняется от своего математического ожидания (почти не случайна), то корреляционный момент будет мал, какой бы тесной зависимостью ни были связаны величины . Поэтому для характеристики связи между величинами  в чистом виде переходят от момента  к безразмерной характеристике

,                                                      (8.6.11)

где ,  - средние квадратические отклонения величин , . Эта характеристика называется коэффициентом корреляции величин  и . Очевидно, коэффициент корреляции обращается в ноль одновременно с корреляционным моментом; следовательно, для независимых случайных величин коэффициент корреляции равен нулю.

Случайные величины, для которых корреляционный момент (а значит, и коэффициент корреляции) равен нулю, называются некоррелированными (иногда – «несвязанными»).

Выясним, эквивалентно ли понятие некоррелированности случайных величин понятию независимости. Выше мы доказали, что две независимые случайные величины всегда являются некоррелированными. Остается выяснить: справедливо ли обратное положение, вытекает ли из некоррелированности величин их независимость? Оказывается - нет. Можно построить примеры таких случайных величин, которые являются некоррелированными, но зависимыми. Равенство нулю коэффициента корреляции - необходимое, но не достаточное условие независимости случайных величин. Из независимости случайных величин вытекает их некоррелированность; напротив, из некоррелированности величин еще не следует их независимость. Условие независимости случайных величин – более жесткое, чем условие некоррелированности.

Убедимся в этом на примере. Рассмотрим систему случайных величин , распределенную с равномерной плотностью внутри круга  радиуса  с центром в начале координат (рис.8.6.1).

Рис.8.6.1

Плотность распределения величин  выражается формулой

Из условия   находим .

Нетрудно убедиться, что в данном примере величины являются зависимыми. Действительно, непосредственно ясно, что если величина  приняла, например, значение 0, то величина  может с равной вероятностью принимать все значения от  до ; если же величина  приняла значение , то величина может принять только одно-единственное значение, в точности равное нулю; вообще, диапазон возможных значений  зависит от того, какое значение приняла .

Посмотрим, являются ли эти величины коррелированными. Вычислим корреляционный момент. Имея в виду, что по соображениям симметрии , получим:

.                                                    (8.6.12)

Для вычисления интеграла разобьем область интегрирования (круг ) на четыре сектора , соответствующие четырем координатным углам. В секторах  и  подынтегральная функция положительна, в секторах  и  - отрицательна; по абсолютной же величине интегралы по этим секторам равны; следовательно, интеграл (8.6.12) равен нулю, и величины  не коррелированы.

Таким образом, мы видим, что из некоррелированности случайных величин не всегда следует их независимость.

Коэффициент корреляции характеризует не всякую зависимость, а только так называемую линейную зависимость. Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или же убывать) по линейному закону. Эта тенденция к линейной зависимости может быть более или менее ярко выраженной, более или менее приближаться к функциональной, т. е. самой тесной линейной зависимости. Коэффициент корреляции характеризует степень тесноты линейной зависимости между случайными величинами. Если случайные величины  и  связаны точной линейной функциональной зависимостью:

.

то , причем знак «плюс» или «минус» берется в зависимости от того, положителен или отрицателен коэффициент . В общем случае, когда величины  и  связаны произвольной вероятностной зависимостью, коэффициент корреляции может иметь значение в пределах:

.

В случае  говорят о положительной корреляции величин  и , в случае  - об отрицательной корреляции. Положительная корреляция между случайными величинами означает, что при возрастании одной из них другая имеет тенденцию в среднем возрастать; отрицательная корреляция означает, что при возрастании одной из случайных величин другая имеет тенденцию в среднем убывать.

В рассмотренном примере двух случайных величин , распределенных внутри круга с равномерной плотностью, несмотря на наличие зависимости между  и , линейная зависимость отсутствует; при возрастании  меняется только диапазон  изменения , а его среднее значение не меняется; естественно, величины  оказываются некоррелированными.

Рис. 8.6.2                                              Рис.8.6.3

Приведем несколько примеров случайных величин с положительной и отрицательной корреляцией.

1. Вес и рост человека связаны  положительной корреляцией.

2. Время, потраченное на регулировку прибора при подготовке его к работе, и время его безотказной работы связаны положительной корреляцией (если, разумеется, время потрачено разумно). Наоборот, время, потраченное на подготовку, и количество неисправностей, обнаруженное при работе прибора, связаны отрицательной корреляцией.

3. При стрельбе залпом координаты точек попадания отдельных снарядов связаны положительной корреляцией (так как имеются общие для всех выстрелов ошибки прицеливания, одинаково отклоняющие от цели каждый из них).

4. Производится два выстрела по цели; точка попадания первого выстрела регистрируется, и в прицел вводится поправка, пропорциональная ошибке первого выстрела с обратным знаком. Координаты точек попадания первого и второго выстрелов будут связаны отрицательной корреляцией.

Если в нашем распоряжении имеются результаты ряда опытов над системой случайных величин , то о наличии или отсутствии существенной корреляции между ними легко судить в первом приближении по графику, на котором изображены в виде точек все полученные из опыта пары значений случайных величин. Например, если наблюденные пары значений величин расположились так, как показано на рис. 8.6.2, то это указывает на наличие явно выраженной положительной корреляции между величинами. Еще более ярко выраженную положительную корреляцию, близкую к линейной функциональной зависимости, наблюдаем на рис. 8.6.3. На рис. 8.6.4 показан случай сравнительно слабой отрицательной корреляции. Наконец, на рис. 8.6.5 иллюстрируется случай практически некоррелированных случайных величин. На практике, перед тем, как исследовать корреляцию случайных величин, всегда полезно предварительно построить наблюденные пары значений на графике для первого качественного суждения о типе корреляции.

 

Рис. 8.6.4                                                              Рис. 8.6.5

Способы определения характеристик системы случайных величин из опытов будут освещены в гл.14.

 

1
Оглавление
email@scask.ru