Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.1. Оптимальная линейная фильтрация. Уравнение Винера-Хопфа
Пусть
Здесь В дальнейшем
будем придерживаться принятой при цифровой обработке изображений декартовой системы
координат с началом в левом верхнем углу кадра и с положительными направлениями
из этой точки вниз и вправо. На рис. 3.1 показаны примеры окрестностей
различных типов, изображенные в виде совокупностей точек. Центром окрестностей,
рабочей точкой, в которой осуществляется обработка, является точка с
координатами
Понятие каузальности
(причинно-следственной зависимости) связывают с соотношением координат текущей
точки Некоторые точки окрестности, приведенной на рис. 3.1.б, удовлетворяют принципу каузальности. Вместе с тем, здесь имеются и такие точки, обе координаты которых превышают соответствующие координаты рабочей точки. Фильтрация, опирающаяся на использование окрестностей с сочетанием таких свойств, называется некаузальной. Окрестности, показанной на рис. 3.1.в, соответствует полукаузальная фильтрация. Одна из координат всех точек окрестности - в данном примере номер строки - не превышает соответствующей координаты рабочей точки. Вторая же координата - в примере номер столбца - у некоторых точек также не превышает соответствующей координаты рабочей точки. Однако среди точек окрестности имеются и такие, у которых эта вторая координата превышает соответствующую координату рабочей точки. Смысл, заложенный в данную классификацию, состоит в том, что, согласно принципу причинности, на формирование отклика физически осуществимого фильтра не могут оказывать влияния элементы входного сигнала, не поступившие к моменту формирования выходного отсчета. Этот принцип естественным образом «работает» в динамических системах, где все происходящие в них процессы являются временными процессами. При цифровой обработке изображений часто приходится иметь дело с ранее сформированными изображениями, уже хранящимися в памяти устройства обработки. В этом смысле соотношение координат, строго говоря, уже не играет такой принципиальной причинной роли, как при обработке сигналов в реальном масштабе времени. Вместе с тем, традиционно сложилась описанная выше классификация процедур обработки изображений, которой, в определенной мере, будем придерживаться и мы в последующем изложении. При линейной фильтрации выходной эффект определяется линейной комбинацией входных данных:
В этом выражении Наиболее распространенным критерием оптимальности, применяемым для оценки качества обработки, является критерий минимума среднего квадрата ошибок. Применительно к фильтрации запишем его выражение в виде:
где Оптимизационную задачу (3.3)
нетрудно свести к решению уравнения или системы уравнений. Для этого вычислим
производную от левой части этого выражения по коэффициенту
Входящие в него математические ожидания являются, как нетрудно видеть, отсчетами корреляционных функций, для которых введем следующие обозначения:
С их учетом (3.4) примет более компактный вид:
Считая автокорреляционную
Если разрешить ее относительно
всех Определим средний квадрат ошибок оптимальной фильтрации. Для этого необходимо выполнить возведение в квадрат в выражении (3.3) и учесть в полученном выражении уравнение Винера-Хопфа (3.6). В результате нетрудно получить:
где Остановимся на анализе изменения средней яркости изображения при его фильтрации. Вычислив математическое ожидание от обеих частей (3.2), находим:
где принято, что средняя яркость
которое является дополнительным требованием к импульсной характеристике фильтра. Поэтому оптимизационную задачу (3.3) необходимо решать с учетом данного ограничения типа равенства. Вместо этого часто перед
фильтрацией осуществляют вычитание средней яркости
|
1 |
Оглавление
|