Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
4.1.3. РасфокусировкаЧеткость изображения характеризуется воспроизведением мелких деталей и определяется разрешающей способностью формирующей системы. Разрешающая способность, например, оптической системы численно выражается количеством пар черно-белых линий на 1 мм изображения, которое формируется объективом системы. Если плоскость формируемого изображения находится в фокусе объектива, то пучок лучей, исходящий от точки на объекте, сходится в точку на изображении. При расфокусировке точка воспроизводится в виде некоторого пятна (кружка размытия), и две близко расположенные точки на исходном изображении сливаются в одну на наблюдаемом. Величина кружка размытия зависит от фокусного расстояния объектива, а также от расстояний от объектива до объекта и до плоскости формируемого изображения [4.1]. Дискретное изображение будет четким (сфокусированным), если диаметр кружка размытия не превышает шага дискретизации наблюдаемого изображения. В противном случае линейные искажения становятся заметными.
При расфокусировке распределение интенсивности на изображении точечного источника, формируемого тонкой линзой с круговой апертурой, постоянно в пределах кружка размытия радиусом и равно нулю за его пределами. Это соответствует цилиндрической ФРТ (4.8) Из (4.8) следует, что размеры кадра . Взяв двумерное преобразование Фурье от (4.8), получим передаточную функцию оптической системы , (4.9) где - функция Бесселя первого порядка. В дискретном случае ФРТ (4.8) имеет вид: (4.10) На рис.4.8 и 4.9 показаны ФРТ для тонкой линзы (4.10) и модуль ее передаточной функции при радиусе кружка размытия и размерах кадра изображения элементов.
Земную атмосферу также можно рассматривать как оптическую систему. В качестве приближенной модели ФРТ такой системы используется двумерный гауссовский импульс , (4.11) который в дискретном случае имеет вид , (4.12) где - нормирующий коэффициент, - коэффициент пространственной нерезкости. Передаточная функция, соответствующая ФРТ (4.11), определяется выражением . (4.13) Очевидно, что точки, для которых выполняется условие (4.2), образуют круг радиусом . (4.14) Следовательно, чем больше , тем меньше расфокусировка наблюдаемого изображения. ФРТ для земной атмосферы и соответствующая ей передаточная функция при приведены на рис.4.10 и 4.11. Радиус кружка размытия примерно равен 15. Размеры пятна ФРТ на рис. 4.10 визуально кажутся меньше чем размеры пятна для тонкой линзы (рис. 4.8), т.к. гауссовский импульс является быстро убывающей функцией.
Соотношения между различными кадрами изображений при расфокусировке соответствуют тем, что приведены на рис. 4.3, поскольку кадр ФРТ симметричен относительно центра координат. На рис.4.12 приведен искаженный вариант изображения «Сатурн» (рис.4.6). Свертка исходного изображения производилась с гауссовским импульсом при . Искаженное изображение содержит элементов.
Таким образом, можно выделить три основных фактора, которые существенно усложняют решение проблемы восстановления изображений. 1. Искажения типа расфокусировка или смаз проявляются в ослаблении верхних пространственных частот изображения, т.к. формирующие системы представляют собой фильтры нижних частот. При этом отношение сигнал/шум на верхних частотах, определяющих четкость изображения, будет значительно хуже, чем для изображения в целом. Если система, формирующая изображение, ослабляет сигнал на каких-то пространственных частотах, то при восстановлении он должен быть усилен в той мере, в какой был ослаблен. Вместе с сигналом будут усиливаться и шумы. Поэтому улучшение качества изображения по резкости может привести к ухудшению его качества по зашумленности. 2. Яркость на краях кадра искаженного изображения зависит от яркости объектов, расположенных вне кадра, за счет свертки исходного изображения с ФРТ. При восстановлении изображений из-за неполной информации о сигнале вне кадра возникают краевые эффекты. Влияние краевых эффектов на качество восстановления в ряде случаев оказывается даже более существенным, чем зашумленность изображения. 3. При искажениях, вызванных движением или расфокусировкой камеры, передаточные функции (4.7) и (4.9) имеют нули, наличие которых обусловлено осциллирующим характером передаточных функций. Поскольку спектр искаженного изображения равен произведению спектра исходного изображения и передаточной функции (см. (4.5)), то наличие нулей приводит к полной утрате данных об исходном изображении на соответствующих частотах. По этой причине не удается абсолютно точно восстановить исходное изображение по наблюдаемому изображению, даже если отсутствуют шумы наблюдения и размеры кадров неограничены. При решении задач восстановления изображений используются различные алгоритмы, как имеющие строгое математическое обоснование, так и эмпирические. Для искажений, описываемых уравнением свертки, эти алгоритмы условно можно разделить на три основные группы: алгоритмы решения системы алгебраических уравнений, алгоритмы фильтрации изображений в частотной области и итерационные алгоритмы.
|
1 |
Оглавление
|