Главная > Цифровая обработка изображений в информационных системах
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.2. Масочная фильтрация изображений при наличии аддитивного белого шума

Распространенным видом помехи является белый шум, аддитивно воздействующий на изображение. Наблюдаемое в этом случае изображение (3.1) имеет вид:

,                  (3.10)

а корреляционная функция шума     описывается выражением:

.

Здесь   - дисперсия шума, а    -  символ Кронекера. Считаем, что входной сигнал центрирован, т.е. имеет нулевое математическое ожидание, а изображение   и  шум   взаимно независимы, поэтому для корреляционной функции входного сигнала справедливо:

,

где   - дисперсия, а   - нормированная корреляционная функция полезного сигнала. Нетрудно видеть, что в этих условиях взаимная корреляционная функция   совпадает с корреляционной функцией полезного сигнала  . Поэтому уравнение Винера-Хопфа  (3.6) приводится к виду:

             (3.11)

где   - отношение дисперсий сигнала и шума.

Преобразуем также выражение (3.7) для ошибок фильтрации, для чего запишем в явном виде то из уравнений в (3.11), которое соответствует  значениям 

,

откуда находим:

.

Сравнивая это соотношение с (3.7), окончательно получаем:

,

где   - относительный средний квадрат ошибок фильтрации. Таким образом, для определения ошибок фильтрации необходимо знать отношение сигнал/шум (которое входит также и в уравнение Винера-Хопфа) и значение оптимальной импульсной характеристики в точке (0,0).

Для того чтобы при решении уравнения (3.11) воспользоваться существующими программными средствами ЭВМ, необходимо выполнить его упорядоченное преобразование к каноническому векторно-матричному виду. Для этого требуется совокупность  неизвестных величин   представить в виде вектора  . Точно также множество величин, образующих левые части (3.11), следует представить в виде вектора  , а множество коэффициентов правой части в виде матрицы   размера  . Тогда уравнение и его решение примут вид:

.

В практике цифровой обработки изображений широко используется масочная фильтрация. Ее линейная разновидность является одним из вариантов двумерной КИХ-фильтрации. В качестве маски используется множество весовых коэффициентов, заданных во всех точках окрестности  , обычно симметрично окружающих рабочую точку кадра. Распространенным видом окрестности, часто применяемым на практике, является квадрат 33 с рабочим элементом в центре, изображенный на рис. 3.1.б. Применяют различные разновидности масок, одним из эвристических вариантов является равномерная маска, все девять весовых коэффициентов которой равны 1/9. Такой выбор коэффициентов отвечает условию сохранения средней яркости  (3.9) и поэтому в процессе обработки центрировать изображение не требуется.

Визуально эффективность фильтрации можно оценить с помощью рис.3.2. На рис. 3.2.а показан зашумленный портрет (изображение без шума приведено на рис. 1.3.а) при отношении сигнал/шум равном -5дБ. Результат масочной фильтрации при оптимальном виде ИХ, найденной из (3.11), приведен на рис.3.2.б. Результат фильтрации, выполненной равномерным масочным оператором не приводится, поскольку с визуальной точки зрения он мало отличается от рис.3.2.б. При этом, однако, с количественной точки зрения различия достаточно заметны: если при оптимальной КИХ относительная ошибка , то при равномерной КИХ она возрастает почти на 30% и составляет  . Различие резко возрастает при более высоком уровне шума. Так, например, при отношении сигнал/шум равном -10дБ  имеем  и , т.е. применение равномерной КИХ вместо оптимальной приводит в этом случае к увеличению ошибок более чем вдвое.

а)

б)

Рис. 3.2. Пример масочной фильтрации при

Здесь полезно отметить определенное разногласие в оценках качества, даваемых человеческим глазом и применяемыми количественными показателями. Глаз является слишком совершенным изобретением природы, чтобы с ним могли соревноваться достаточно примитивные математические показатели типа среднего квадрата ошибок. Поэтому некоторые результаты, рассматриваемые с точки зрения математических показателей как  катастрофические, визуально могут быть вполне удовлетворительными. Означает ли это, что математические критерии вообще непригодны при цифровой обработке изображений? Конечно, нет. Цифровая обработка изображений находит применение в различных информационных системах с автоматическим принятием решений, основанным на этой обработке.

Функционирование таких систем, где отсутствует человеческий глаз, полностью подчинено математическим критериям и качество их работы оценивается только математическими показателями. Понятно, что и качество изображений, используемых в этих системах, также должно оцениваться только математическими критериями.

В заключение данного параграфа подчеркнем, что в целом применение описанных процедур фильтрации приводит к существенному снижению уровня шума на изображении. Количественно эффективность данной обработки можно охарактеризовать коэффициентом улучшения отношения сигнал/шум   , где учтено, что величина   определяет отношение сигнал/шум после фильтрации. Улучшение зависит от уровня шума на исходном изображении и составляет в приведенном эксперименте   при   дБ  и    при   дБ. Коэффициент улучшения тем выше, чем сильнее шум на исходном изображении.

 

1
Оглавление
email@scask.ru