Главная > Цифровая обработка изображений в информационных системах
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.6. Медианная фильтрация

Все линейные алгоритмы фильтрации приводят к сглаживанию резких перепадов яркости изображений, прошедших обработку. Этот недостаток, особенно существенный, если потребителем информации является человек, принципиально не может быть исключен в рамках линейной обработки. Дело в том, что линейные процедуры являются оптимальными при гауссовском распределении сигналов, помех и наблюдаемых данных. Реальные изображения, строго говоря, не подчиняются данному распределению вероятностей. Причем, одна из основных причин этого состоит в наличии у изображений разнообразных границ, перепадов яркости, переходов от одной текстуры к другой и т. п. Поддаваясь локальному гауссовскому описанию в пределах ограниченных участков, многие реальные изображения в этой связи плохо представляются как глобально гауссовские объекты. Именно это и служит причиной плохой передачи границ при линейной фильтрации.

Вторая особенность линейной фильтрации - ее оптимальность, как только что упоминалось, при гауссовском характере помех. Обычно этому условию отвечают шумовые помехи на изображениях, поэтому при их подавлении линейные алгоритмы имеют высокие показатели. Однако, часто приходится иметь дело с изображениями, искаженными помехами других типов. Одной из них является импульсная помеха. При ее воздействии на изображении наблюдаются белые или (и) черные точки, хаотически разбросанные по кадру. Применение линейной фильтрации в этом случае неэффективно - каждый из входных импульсов (по сути - дельта-функция) дает отклик в виде импульсной характеристики фильтра, а их совокупность способствует распространению помехи на всю площадь кадра.

Удачным решением перечисленных проблем является применение медианной фильтрации, предложенной Дж. Тьюки в 1971 г. для анализа экономических процессов. Наиболее полное исследование медианной фильтрации применительно к обработке изображений представлено в сборнике [3.9]. Отметим, что медианная фильтрация представляет собой эвристический метод обработки, ее алгоритм не является математическим решением строго сформулированной задачи. Поэтому исследователями уделяется большое внимание анализу эффективности обработки изображений на ее основе и сопоставлению с другими методами.

При применении медианного фильтра (МФ) происходит последовательная обработка каждой точки кадра, в результате чего образуется последовательность оценок. В идейном отношении обработка в различных точках независима (этим МФ похож на масочный фильтр), но в целях ее ускорения целесообразно алгоритмически на каждом шаге использовать ранее выполненные вычисления.

При медианной фильтрации используется двумерное окно (апертура фильтра), обычно имеющее центральную симметрию, при этом его центр располагается в текущей точке фильтрации. На рис. 3.10 показаны два примера наиболее часто применяемых вариантов окон в виде креста и в виде квадрата. Размеры апертуры принадлежат к числу параметров, оптимизируемых в процессе анализа эффективности алгоритма. Отсчеты изображения, оказавшиеся в пределах окна, образуют рабочую выборку текущего шага.

а)

б)

Рис. 3.10. Примеры окон при медианной фильтрации

Двумерный характер окна позволяет выполнять, по существу, двумерную фильтрацию, поскольку для образования оценки привлекаются данные как из текущих строки и столбца, так и из соседних. Обозначим рабочую выборку в виде одномерного массива ; число его элементов равняется размеру окна, а их расположение произвольно. Обычно применяют окна с нечетным числом точек  (это автоматически обеспечивается при центральной симметрии апертуры и при вхождении самой центральной точки в ее состав). Если упорядочить последовательность  по возрастанию, то ее медианой будет тот элемент выборки, который занимает центральное положение в этой упорядоченной последовательности. Полученное таким образом число и является продуктом фильтрации для текущей точки кадра. Понятно, что результат такой обработки в самом деле не зависит от того, в какой последовательности представлены элементы изображения в рабочей выборке . Введем формальное обозначение описанной процедуры в виде:

.                      (3.48)

Рассмотрим пример. Предположим, что выборка имеет вид: , а элемент 250, расположенный в ее центре, соответствует текущей точке фильтрации  (рис. 3.10). Большое значение яркости в этой точке кадра может быть результатом воздействия импульсной (точечной) помехи. Упорядоченная по возрастанию выборка имеет при этом вид {45,55,75,99,104,110,136,158,250}, следовательно, в соответствии с процедурой (3.48), получаем . Видим, что влияние “соседей” на результат фильтрации в текущей точке привело к “игнорированию” импульсного выброса яркости, что следует рассматривать как эффект фильтрации. Если импульсная помеха не является точечной, а покрывает некоторую локальную область, то она также может быть подавлена. Это произойдет, если размер этой локальной области будет меньше, чем половина размера апертуры МФ. Поэтому для подавления импульсных помех, поражающих локальные участки изображения, следует увеличивать размеры апертуры МФ.

Из (3.48) следует, что действие МФ состоит в “игнорировании” экстремальных значений входной выборки - как положительных, так и отрицательных выбросов. Такой принцип подавления помехи может быть применен и для ослабления шума на изображении. Однако исследование подавления шума при помощи медианной фильтрации показывает, что ее эффективность при решении этой задачи ниже, чем у линейной фильтрации [3.9].

Результаты экспериментов, иллюстрирующие работу МФ, приведены на рис. 3.11. В экспериментах применялся МФ, имеющий квадратную апертуру со

стороной равной 3. В левом ряду представлены изображения, искаженные помехой, в правом - результаты их медианной фильтрации. На рис. 3.11.а и рис. 3.11.в показано исходное изображение, искаженное импульсной помехой. При ее наложении использовался датчик случайных чисел с равномерным на интервале [0, 1] законом распределения, вырабатывающий во всех точках кадра независимые случайные числа. Интенсивность помехи задавалась вероятностью  ее возникновения в каждой точке. Если для случайного числа , сформированного в точке , выполнялось условие , то яркость изображения  в этой точке  замещалась числом 255, соответствующим максимальной яркости (уровню белого). На рис. 3.11.а действием импульсной помехи искажено 5 % (=0.05), а на рис. 3.11.в - 10 % элементов изображения. Результаты обработки говорят о практически полном подавлении помехи в первом случае и о ее значительном ослаблении во втором.

а)

б)

в)

г)

д)

е)

Рис. 3.11. Примеры медианной фильтрации

Рис. 3.11.д показывает изображение, искаженное независимым гауссовским шумом при отношении сигнал/шум дБ, а рис. 3.11.е - результат его фильтрации медианным фильтром. Условия данного эксперимента позволяют сравнивать его результаты с результатами рассмотренной выше линейной фильтрации. В таблице 3.1 приведены данные, дающие возможность такого сравнения. Для различных методов фильтрации в этой таблице приводятся значения относительного среднего квадрата ошибок  и коэффициента ослабления шума  для случая, когда отношение сигнал/шум на входе фильтра составляет  -5 дБ.

Табл.3.1. Сравнение эффективности подавления шума при фильтрации изображений,  дБ

 

масочный фильтр с оптимальн. КИХ

масочный фильтр с равномерн. КИХ

двумерный рекуррентн. фильтр

двумерный фильтр Винера

медианный фильтр

0.309

0.395

0.29

0.186

0.539

10.2

8.0

10.9

17.0

5.86

Наибольшей эффективностью обладает двумерный фильтр Винера, уменьшающий средний квадрат ошибок в 17 раз. Медианный фильтр имеет наименьшую из всех рассмотренных фильтров эффективность, ему соответствует =5.86. Тем не менее, это число свидетельствует о том, что и при его помощи удается значительно снизить уровень шума на изображении.

Вместе с тем, как говорилось выше, и что демонстрирует рис. 3.11.е, медианная фильтрация в меньшей степени сглаживает границы изображения, чем любая линейная фильтрация. Механизм этого явления очень прост и заключается в следующем. Предположим, что апертура фильтра находится вблизи границы, разделяющей светлый и темный участки изображения, при этом ее центр располагается в области темного участка. Тогда, вероятнее всего, рабочая выборка будет содержать большее количество элементов с малыми значениями яркости, и, следовательно, медиана будет находиться среди тех элементов рабочей выборки, которые соответствуют этой области изображения. Ситуация меняется на противоположную, если центр апертуры смещен в область более высокой яркости. Но это и означает наличие чувствительности у МФ к перепадам яркости.

 

1
Оглавление
email@scask.ru