Главная > Цифровая обработка изображений в информационных системах
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.5.3. Двухэтапная марковская фильтрация изображений

Рассмотрим подход к фильтрации изображений, основу которого составляет использование двумерных, но неполных входных данных, а также наличие у них марковских свойств. Рассмотрим получение оценки изображения в произвольной точке кадра с координатами , называя ее текущей точкой фильтрации. Осуществляя развертку изображения, можно последовательно в состояние текущей точки переводить все точки кадра, выполняя таким образом его полную  обработку.

Будем считать, что для получения оценки  в точке  привлекаются лишь данные , образованные наблюдениями -й строки  и  -го столбца, на пересечении которых в кадре расположен оцениваемый элемент. Рис. 3.8 иллюстрирует геометрию задачи.

Рис. 3.8. Геометрия использования данных при двухэтапной фильтрации

Наблюдения  образованы входными данными, лежащими на горизонтальных и вертикальных лучах  , расходящихся из текущей точки. Причем в каждый из этих векторов не входит текущее наблюдение , которое в связи с этим представлено в  отдельным элементом.

Будем, кроме того, рассматривать такие случайные поля , которые обладают свойством условной независимости. Это означает, что совместное распределение всех его элементов , расположенных на “кресте”  (рис. 3.8), можно представить в виде:

,                (3.45)

где верхние индексы также указывают на принадлежность векторов соответствующим лучам. Соотношение (3.45) означает, что значения сигнала на любой строке и на любом столбце изображения условно независимы, если известно значение сигнала  на пересечении этих строки и столбца. Если, кроме того, одномерные сигналы  и  являются марковскими последовательностями, для которых справедливо свойство условной независимости (3.42), то имеем:

.          (3.46)

Используя эту математическую модель изображения в случае независимой помехи , можно одноточечное апостериорное распределение представить в виде [3.6]:

.                 (3.47)

Соотношение (3.47) служит теоретической базой для построения оптимальных двухэтапных процедур фильтрации, использующих неполные данные исходных наблюдений. Полное АРВ, основанное на всех привлекаемых при фильтрации данных , как и в одномерном случае, представляется в виде произведения частных АРВ, каждое из которых использует локальные данные одного из лучей  и текущий элемент . Наличие в знаменателе третьей степени одноточечного АРВ служит компенсацией трехкратного “лишнего” участия текущего наблюдения в числителе. Константа  позволяет сделать АРВ нормированным.

Рассмотренный вариант обработки является разновидностью некаузальной фильтрации, поскольку в получении оценки участвуют элементы входного наблюдения, имеющие как большие, так и меньшие значения аргументов, чем у оцениваемого сигнала. Если в процессе обработки опираться только на данные двух лучей  и , то будет получен двумерный каузальный фильтр. При добавлении к ним третьего луча  реализуется полукаузальная фильтрация. Используя лучи  и , можем осуществить одномерную некаузальную фильтрацию. Коррекция, которой необходимо в этих случаях подвергнуть формулу (3.47), вполне очевидна.

Соотношение (3.47) дает возможность выполнить двумерную обработку изображения в виде некоторой совокупности одномерных процедур. Весь цикл вычислений можно представить следующим образом. Выполняется обработка всех строк изображения в прямом направлении (слева направо), в результате чего в каждой точке образуется распределение . При этом используются одномерные рекуррентные процедуры, описанные выше. Далее происходит повторное сканирование строк, но в “обратном времени” - справа налево, в процессе которого вычисляются распределения . Затем изображение аналогично дважды обрабатывается по столбцам - сверху вниз и снизу вверх, в результате чего определяются частные АРВ  и . Вычислением одноточечного АРВ  завершается первый этап обработки. На втором этапе происходит объединение всех частных АРВ в каждой точке кадра в окончательное АРВ, а также на его основе вычисляются точечные оценки изображения .

С точки зрения скорости вычислений данная технология обработки является очень привлекательной. Следует, вместе с тем, иметь в виду, что для ее реализации необходим достаточный запас оперативной памяти, чтобы хранить промежуточные результаты обработки, к числу которых относятся все частные АРВ. В этом отношении вычислительный процесс может быть существенно оптимизирован, поскольку ни одно из частных АРВ не представляет окончательной ценности. Это позволяет, например, не хранить отдельно пять различных распределений, входящих в правую часть (3.47), а по мере получения очередного сомножителя формировать произведение, именно которое и следует хранить в памяти до завершения вычислений. Очевидно, что структура вычислений, как и в одномерном случае, удобна для реализации при помощи многоканального вычислительного устройства.

Структура распределений очень сильно влияет на требуемые объем вычислений и ресурс памяти. Имеются очень “удобные” в этом смысле виды распределений. Например, если для описания изображения применима модель случайного поля с гауссовским распределением, то для представления каждого из частных и финального АРВ в (3.47) требуется наличие всего двух параметров - математического ожидания и дисперсии. Именно это и определяет конкретный характер и количество вычислений в процессе фильтрации, а также объем необходимой памяти.

Другим примером такого рода может служить математическая модель бинарного случайного поля, которое в различных точках принимает значения  или . Такое описание также является очень экономичным, поскольку АРВ содержит всего две вероятности  и , непосредственное вычисление которых и выполняется при помощи (3.47).

Существует отдельный вопрос, связанный с применимостью марковских двумерных моделей (3.45), (3.46), позволяющих  построить эффективные двухэтапные процедуры. Его изучение является достаточно непростой теоретической задачей. В частности, в работах [3.6.,3.8] установлено, что и для гауссовских, и для бинарных случайных полей необходимым и достаточным условием применимости (3.45) является возможность представления двумерных корреляционных функций этих полей в разделимом виде, т.е. в виде произведения двух множителей, один из которых описывает корреляцию изображения по строке, а второй - по столбцу. Дополнительные требования, вытекающие из (3.46), сводятся к существованию марковских свойств у одномерных последовательностей в горизонтальном и вертикальном сечениях изображения. В двух указанных примерах наличие таких свойств связано с экспоненциальным видом корреляционных функций этих одномерных сечений изображения.

На рис. 3.9 приведены результаты экспериментальной проверки двумерных двухэтапных алгоритмов фильтрации изображения. На рис. 3.9.а показано тестовое бинарное изображение “острова”, на рис. 3.9.б - изображение, искаженное белым гауссовским шумом (отношение сигнал/шум  дБ). Рис.3.9.в иллюстрирует применение простой поэлементной пороговой обработки (рис. 1.4.а), при которой порог определялся так, чтобы реализовывалась одноточечная процедура максимума апостериорной вероятности. На рис. 3.9.г, 3.9.д  и  3.9.е показаны различные результаты двухэтапной фильтрации. Первый из них соответствует одномерной каузальной фильтрации, второй - также одномерной, но некаузальной, а третий - двумерной некаузальной процедуре. Визуальное сравнение результатов говорит об очень низком качестве поэлементной обработки. При ее использовании вероятность

а)

б)

в)

г)

д)

е)

Рис. 3.9. Двухэтапная марковская фильтрация изображения

ошибки (т.е. события, состоящего в замене числа  числом  или наоборот) составила 0.23. Качество обработки улучшается при использовании фильтрации, причем оно повышается как при переходе от одномерной каузальной (при которой вероятность ошибки составляет 0.086) к одномерной некаузальной (вероятность ошибки 0.041), так и при переходе к двумерной обработке, при которой достигается вероятность ошибки равная 0.022. Таким образом, применение одномерной некаузальной фильтрации позволяет уменьшить вероятность ошибки в 5 раз по сравнению с поэлементной пороговой обработкой, а двумерной некаузальной фильтрации - почти в 10 раз. Эти примеры говорят об очень высокой эффективности, которой может достигать фильтрация, и убеждают в полезности  тех значительных усилий, которые необходимы для нахождения эффективных алгоритмов.

 

1
Оглавление
email@scask.ru