Главная > Цифровая обработка изображений в информационных системах
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

6.5. Взаимное ориентирование

В предыдущем параграфе показано, как с помощью тестовой сцены не только оценить внутренние параметры камеры, но и определить ее положение относительно системы координат, в которой задана тестовая сцена. Последнее позволяет нам, откалибровав две камеры по одной тестовой сцене, определить их взаимное положение (см. (6.8)). Однако если внутренние параметры камер определены их конструкцией и могут считаться постоянными, то взаимное положение камер во многих практических случаях может изменяться в процессе регистрации сцены. В связи с этим возникает задача взаимного ориентирования, не предполагающая наличия тестовой сцены.

Рассмотрим снова пару камер, внутренние параметры которых известны, но неизвестны внешние параметры (матрица  и вектор ). Умножив обе части выражения (6.8) слева сначала векторно на , а затем скалярно на , получим

.

Это соотношение формально выражает тот факт, что векторы ,  и  лежат в одной плоскости, проходящей через три точки: оптические центры камер  и  и точку наблюдения .  Выражая  через  из (6.10) получим:

                 (6.21)

или, учитывая свойства смешанного произведения векторов,

.              (6.22)

Эквивалентные соотношения (6.21) и (6.22) являются основой для  оценивания матрицы  и вектора . Предположим, что известны координаты  пар сопряженных точек и, соответственно,  пар векторов  и   .

Рассмотрим метод оценивания  и , использующий (6.22). Так как это соотношение справедливо для любой пары сопряженных точек, мы имеем систему из  уравнений относительно неизвестных  и , которую можно представить в виде:

,   где  .              (6.23)

Система (6.23) является однородной линейной по . Это означает, что вектор трасляции можно  оценить  только с точностью до постоянного множителя. Вводя условие нормировки , количество возможных решений можно ограничить двумя, отличающимися знаком. Вопрос о выборе знака будет рассмотрен позже. Система (6.23) содержит пять неизвестных, так как матрица  в силу условий нормировки и ортогональности зависит от трех параметров, а вектор  с учетом введенной нормировки – от двух. Поэтому число уравнений в системе, следовательно и число пар известных сопряженных точек  должно быть не менее пяти.

Поскольку на практике в матрицу  входят не точные значения координат сопряженных точек, а результаты их измерений, которые могут содержать ошибки,  реально система (6.23) имеет ненулевую правую часть, т.е.

,

где , как и в п.6.2, - вектор невязки, обусловленный наличием ошибок измерений.

Согласно МНК в качестве оценок матрицы вращения и вектора трансляции следует выбрать такие  и , которые минимизируют значения функционала . Как упоминалось ранее, при условии  квадратичная форма  достигает минимума  по  ( - минимальное собственное число матрицы ), если  - собственный вектор матрицы, соответствующий . Поэтому процедуру оценивания  и  можно разбить на два этапа. На первом находится матрица , минимизирующая . На втором оценивается собственный вектор матрицы , соответствующий . Существует множество алгоритмов и их программных реализаций для вычисления собственных векторов, поэтому второй этап не вызывает трудностей.

Значительно более сложной задачей является задача оценивания матрицы . Один из возможных алгоритмов состоит в следующем [6.6]. Известно [6.1, п.14.10], что матрица  может быть представлена в виде , где

 ,   ,

.

Углы ,  и   и есть те три неизвестных параметра, от которых зависит матрица . На практике всегда известен диапазон, в котором они  могут лежать. Выполняя в этом диапазоне полный перебор по всем углам с достаточно грубым шагом (например, 1°) можно приблизиться к значениям, удовлетворяющим требованиям минимизации функционала  по . Затем в окрестности этих значений для уточнения положения минимума можно воспользоваться одним  из известных методов минимизации [6.5, гл.V] (например, наискорейшего спуска, Ньютона, Маркуардта).

Наконец, получив оценки  и , можно, используя (6.11), оценить и -координаты наблюдаемых точек. Из способа задания систем координат (см. рис.6.4)  следует, что  и  должны быть положительными. Этим условием и определяется выбор правильного знака вектора трансляции .

В заключение необходимо сказать, что развитием темы взаимного ориентирования является задача самокалибровки системы камер, целью которой является оценивание как внутренних так и внешних параметров. Не останавливаясь на этой задаче подробно, отметим только, что в системе, состоящей из двух, даже одинаковых, камер, данных для самокалибровки недостаточно. Добавление третьей камеры с теми же внутренними параметрами делает самокалибровку возможной. Подробное исследование этого вопроса можно найти в [6.7].

Отметим, что задача определения взаимного положения камер может иметь и другую трактовку. Предположим, что движущаяся камера непрерывно регистрирует некоторую сцену. Тогда, анализируя последовательность изображений и решая эту задачу, можно определить характер движения камеры в пространстве.

 

1
Оглавление
email@scask.ru