Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.3. Рекуррентная каузальная фильтрация изображенийПроблема борьбы с шумом не решается полностью применением масочных фильтров по следующим причинам. Во-первых, ограниченность размера окрестности, используемой масочным фильтром, приводит к его потенциально ограниченной способности к подавлению шума. Это проявляется при значительном уровне шума на изображении - в меньшей степени при оптимальном выборе КИХ, сильнее при неоптимальной КИХ. Можно, конечно, увеличивать размер окрестности, прибегая к использованию КИХ-фильтров с более длинными импульсными характеристиками. Однако при этом усиливается второй недостаток масочного фильтра, состоящий в его и без того достаточно высокой вычислительной трудоемкости.
В настоящее время отсутствуют методы двумерной фильтрации, в которых сочетаются предельно достижимое качество фильтрации и низкие требования к вычислительным ресурсам ЭВМ, реализующей обработку. Существует много подходов к решению данной проблемы, но все они для достижения компромисса между точностью и реализуемостью прибегают к тем или иным приближениям. Рассмотрим один из них [3.1]. Идея заключается в использовании двумерного БИХ-фильтра с таким видом импульсной характеристики, при которой его практическая реализация была бы простой, и с такими параметрами этой импульсной характеристики, при которых эффективность фильтрации приближалась бы к потенциально возможной. Создать фильтр с такими свойствами удается на основе аналогии с одномерным фильтром Калмана. Наиболее простым примером одномерной фильтрации является калмановская фильтрация однородной стационарной гауссовской последовательности, имеющей корреляционную функцию экспоненциального вида
Здесь
Нетрудно установить, что импульсная характеристика этого фильтра имеет экспоненциальный вид:
где Отталкиваясь от (3.13) как от одномерного аналога, будем находить двумерную БИХ для каузальной фильтрации изображений от некоррелированного шума в виде двумерной экспоненты:
Здесь, как и в случае одномерного
фильтра,
Замечая, что выражение в круглых скобках является ошибкой фильтрации, представим эту формулу в виде:
Смысл данного выражения состоит в том, что при оптимальной линейной фильтрации ошибка ортогональна всем элементам наблюдаемых данных, используемых при фильтрации. Но тогда нетрудно убедиться и в ортогональности ошибки и результата фильтрации (получаемой оценки)
для чего достаточно вычислить левую часть этого выражения с учетом (3.2) и (3.15). Для
дальнейшего необходимо воспользоваться в (3.16) принятым представлением
импульсной характеристики (3.14), в результате данное соотношение превращается
в уравнение относительно искомого параметра
С учетом этого, считая, что кадр имеет бесконечные размеры (это позволяет принять бесконечными соответствующие пределы суммирования в (3.2)), можно получить следующее алгебраическое уравнение
относительно параметра удовлетворяется при Подставив в (3.7) выражения ИХ (3.14) и корреляционной функции (3.17), можно получить следующую формулу для среднего квадрата ошибок фильтрации:
Подставив далее выражение ИХ (3.14) в (3.2), можно привести выражение отклика фильтра к виду :
Рекуррентный характер алгоритма
(3.19) является важным положительным качеством рассматриваемого фильтра. Как
следует из (3.19), его работа требует выполнения на каждом шаге обработки всего
трех операций умножения и трех суммирования, причем структура алгоритма
универсальна и, в частности, не зависит от отношения сигнал/шум. Для сравнения,
масочный фильтр с размером окрестности 3 При фильтрации реальных изображений ограниченного размера возникает граничная проблема получения оценок в точках нулевой строки и нулевого столбца. Естественным решением является использование здесь обычной (одномерной) калмановской фильтрации. Пример применения описанного двумерного фильтра показан на рис. 3.3, где представлен результат эксперимента с тем же портретом и при том же отношении сигнал/шум -5 дБ, что и при испытании масочного фильтра.
Поэтому здесь не приводится
показанное на рис.3.2.а входное изображение с шумом. Результат двумерной
рекуррентной фильтрации представлен на рис.3.3.а, а на рис.3.3.б для сравнения
повторен результат оптимальной масочной фильтрации (рис.3.2.б). Визуальная
оценка говорит в пользу двумерного рекуррентного фильтра, поскольку уровень
остаточного шума на рис.3.3.а ниже. Сравнение по среднему квадрату ошибок
совпадает с субъективной оценкой: величина Необходимо отметить, однако, следующее. Вместе с уменьшением уровня шума при двумерной рекуррентной фильтрации наблюдается более значительная утрата резкости обработанного изображения. Это является проявлением упоминавшихся выше динамических искажений, более сильных при бесконечной импульсной характеристике, чем при конечной. Во-вторых, рассмотренный двумерный фильтр не является абсолютно оптимальным, поскольку его структура определена волевым решением при выборе ИХ в виде (3.14). Поэтому и получаемое при его помощи ослабление шума не является предельным.
|
1 |
Оглавление
|