Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5. ТЕОРИЯ СВЯЗАННЫХ ВОЛН И МОДОВАЯ ТЕОРИЯ ТРЕХМЕРНОЙ ГОЛОГРАММЫКак уже отмечалось, кинематическая теория, правильно описывая основной механизм трехмерной голограммы, не дает количественных соотношений; в частности, с ее помощью нельзя рассчитать дифракционную эффективность. Вместе с тем знание закономерностей, которые определяют эту весьма важную величину, и параметров, от которых она зависит, играют определяющую роль при разработке технологии изготовления фотоматериалов, предназначенных для записи тех или иных типов трехмерных голограмм. При этом для оценки качества фотоматериала, как правило, используют некоторую условную величину — дифракционную эффективность простейшей объемной решетки, полученной в результате регистрации картины интерференции двух плоских волн.
Рис. 5. К рассмотрению теории связанных волн. V — объем голограммы; Именно в применении к решению этой весьма важной задачи и используется в основном теория связанных волн, предложенная американским, исследователем Когельником [7]. Рассмотрим соответствующий этой теории механизм взаимодействия света с решеткой несколько подробнее. Предположим, что на голограмме записаны две плоские волны о лучевыми векторами голограммы, преобразуется во всех точках этого объема в волну Теория связанных волн внесла в эти представления уточнения. Очевидно, что восстановленная волна Таким образом, на первоначальные падающую и восстановленные волны накладываются вторичные волны, совпадающие с ними по направлению, но отличающиеся по фазе. Результат сложения этих волн не является тривиальным. Например, в рассматриваемом случае при некоторой толщине голограммы Последовательность преобразований теории связанных волн сначала формально совпадает с соответствующей последовательностью теории первого приближения [см. выражения (13) — (15)]. Отличие состоит лишь в том, что в выражении (14) волны
Поскольку это уравнение выполняется при произвольном выборе пары плоских волн и записываемых на голограмме, то суммы членов, одна из которых содержит только
Нетрудно заметить, что эти уравнения связаны друг с другом: в уравнение для волновой функции входит амплитуда волновой функции выражения для плоских волн, аналогичные (19) и (20), получаем два уравнения для амплитуд Используя такой подход, Когельник рассмотрел наиболее характерные случаи записи. В частности, он показал, что дифракционная эффективность фазовой отражательной решетки при некоторой достаточно большой толщине стремится к 100%. Дифракционная эффективность такой же амплитудной решетки не превышает 7,2%. Однако следует заметить, что теорию связанных волн нельзя рассматривать как теорию трехмерной голограммы во втором приближении. Действительно, голограмма по своему физическому смыслу представляет собой запись информации о сложном волновом поле, которое можно представить в виде суммы множества плоских волн. Поэтому решетку, образованную в результате записи картины интерференции двух плоских волн, свойства которой рассматриваются в теории Когельника, можно назвать голограммой только условно. Теорию Когельника нельзя считать теорией даже элементарного механизма голограммы — процесса записи и восстановления двух плоских волн, на основе которого можно было бы разработать общую теорию, учитывающую закономерности записи и воспроизведения произвольного волнового фронта, составленного из множества плоских волн. Трудность здесь обусловлена тем, что одна и та же плоская волна, как правило, участвует в создании множества решеток. В таких условиях практически все решетки оказываются связанными друг с другом, и поле излучения, восстановленное голограммой, в отличие от первого приближения уже нельзя представить в виде простой суммы полей, соответствующих отдельным решеткам. При этом теория Когельника не дает ответа на основной вопрос о том, как учесть все эти связи. Более плодотворным путем развития теории трехмерной голограммы оказался подход, предложенный Эвальдом [8] и основанный на идеях динамической теории дифракции рентгеновских лучей. Первоначально эта теория применялась для изучения простой объемной голографической решетки [9]. Впервые для анализа собственно объемной голограммы, т. е. структуры, составленной из множества решеток, ее использовали Аристов и Шехтман (см., например, [10]) В этих работах, в частности, было показано, что, в случае когда голограмма получена с участием мощной опорной ролны, а также когда записанная на голограммах волна имеет сложную структуру, для определения интенсивности восстановленной волны можно пользоваться формулами Когельника. Представления, основанные на динамической теории дифракции, нашли наибольшее выражение в так называемой модовой теории трехмерной голограммы, предложенной Сидоровичем [11]. По существу эта теория обобщает введенное Эвальдом понятие волны, согласованной с периодической неоднородной структурой. В теории Эвальда это понятие удалось применить только к простейшей объемной решетке — пространственной гармонике показателя преломления. Например, в случае, представленном на рис. 6, согласованными волнами фазовой решетки
Рис. 6. К рассмотрению модовой теории трехмерной голограммы. Понятие волны, согласованной с периодической структурой, Обсуждаемая модовая теория трехмерной голограммы доказывает то, что согласованные волны (моды) можно сопоставлять не только простейшим периодическим структурам, но также и трехмерным голограммам — объемным структурам, полученным в результате регистрации интенсивности сложных волновых полей. Оказывается, что каждой трехмерной голограмме соответствует полная система согласованных с нею волн (мод) и что любую волну, эффективно взаимодействующую с трехмерной голограммой, можно разложить по этим модам. В частности, применительно к фазовой голограмме теория предполагает, что каждая мода проходит через голограмму как через однородную среду с определенным показателем преломления. В этом случае действие голограммы состоит в том, что она сдвигает относительную разность фаз между модами. В общих чертах рассмотрение проводится следующим образом. Волну, записанную на голограмме, представляют в виде суммы
Подставив это значение
Будем считать, что условиям распространения света через данную среду удовлетворяют специальные волновые функции (моды)
Относительно этих функций предполагается, что они составлены из тех же плоских волн, которые участвовали в записи голограммы, однако их направления распространения вследствие изменения диэлектрической проницаемости среды после экспозиции стали несколько другими. Кроме того, будем считать, что для любых компонент данной моды это изменение диэлектрической проницаемости одинаково. Все эти условия имеют вид специальных соотношений между волновыми векторами моды к и волновыми векторами Подставляя в уравнение Гельмгольца (13) выражение (32) для
где составляет полный ортогональный базис, по которому можно разложить любую волновую функцию, составленную из плоских волн, экспонировавших голограмму. Модовая теория существенно упрощает рассмотрение процессов, протекающих в трехмерной голограмме, благодаря тому, что она автоматически учитывает очень сложные взаимные связи между рассеянием света на множестве решеток, из которых составлена голограмма, а также и потому, что аналогично теориям первого приближения представляет результат в виде суперпозиции независимых функций. Конкретно модовая теория была развита в применении к фазовым пропускающим [11, 12], амплитудным усиливающим [13] и трехмерным отражательным голограммам [14]. В настоящее время наиболее актуальным является применение модовой теории к описанию отражения света «бриллюэновским зеркалом» [15]. В данном случае модовая теория правильно предсказывает значение полного коэффициента усиления в среде, которое необходимо, чтобы амплитуда обращенной волны превышала шумы. Модовая теория позволяет также сформулировать условия устойчивости обращенной волны при ее распространении сквозь усиливающую голограмму. Все это нашло подтверждение в большом числе экспериментов.
|
1 |
Оглавление
|