Главная > Теория и практика вейвлет-преобразования
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

4.5. Сравнение характеристик обычных и вейвлет-фильтров

Итак, вейвлет-фильтры и обычные фильтры различаются во многих аспектах, как мы показали в предыдущих разделах. Различия сведены в табл. 4.2. Кратко прокомментируем эту таблицу.

Длина фильтра важна в силу двух причин. Во-первых, в таких приложениях, как сегментация изображения, длинный фильтр приведет к неверной локализации контуров, так как на протяжении одного фильтра могут встретиться два контура. Во-вторых, короткие фильтры вычислительно экономнее. К симметричным четным фильтрам применимо полифазное построение, что снижает вычислительную сложность в два раза.

В теории субполосного кодирования допускаются различные типы схем разбиения и любое число каналов у блоков фильтров. В теории вейвлет-анализа предполагается двухканальная схема с рекурсивным разбиением НЧ субполосы. Однако идеи и терминология вейвлетов используются и для многоканальных блоков фильтров, и для схем с произвольным разбиением частотной области (вейвлет-пакеты - см. главу 5).

Таблица 4.2. Сравнение фильтров, применяющихся при субполосном кодировании, и вейвлет-фильтров

Ортогональность вейвлет-фильтров приводит к описанию сигнала взвешенной суммой базисных функций, где весами являются коэффициенты.

В основе теории субполосного кодирования и вейвлетов лежит двухканальная схема анализа-синтеза. По нашему мнению, вклад теории вейвлетов в кодирование изображений двояк. Во-первых, она показала связь дискретной фильтрации с теорией непрерывных функциональных пространств. Эта связь появляется при итерировании фильтров и рассмотрении их предельных функций, масштабирующей и вейвлета. Во-вторых, из теории вейвлетов вытекает рассмотрение гладкости фильтра как критерия для его разработки. Г ладкость фильтра связана с плоскостью характеристики на частоте, равной половине частоты дискретизации. В противоположность этому, при субполосном кодировании основным критерием является аппроксимация прямоугольной характеристики. Правда, важность критерия гладкости для кодирования изображений многими авторами ставится под сомнение. По всей видимости, гладкость важна при решении, какой фильтр из биортогональной пары ставить в секцию синтеза. Применение более гладкого фильтра при синтезе улучшает характеристики кодирования.

Многими авторами сравнивались различные типы фильтров для тех или иных задач. В частности, для кодирования изображений рассмотренная биортогональная пара фильтров длиной 9 и 7 считается одной из лучших.

В заключение отметим, что разница между вейвлет-фильтрами и обычными становится все более несущественной. Недавние публикации показывают, что современные методы разработки фильтров используют различные смешанные критерии.

Categories

1
Оглавление
email@scask.ru