Главная > Теория и практика вейвлет-преобразования
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

10.3. Кодирование посредством нульдерева

Из теории кодирования с погрешностью известно, что оптимальное распределение бит достигается в случае, если сигнал поделен на субполосы, содержащие «белый» шум. Для реальных сигналов это достигается в случае неравномерной ширины субполос: в области НЧ они более узки, чем в области ВЧ. Вот почему вейвлет-преобразование обеспечивает компактность энергии.

Эта компактность энергии ведет к эффективному применению скалярных квантователей. Однако они не учитывают остаточную структуру, сохраняющуюся в вейвлет-коэффициентах, в особенности ВЧ субполос. Современные алгоритмы сжатия все тем или иным образом используют эту структуру для повышения эффективности сжатия.

Одним из наиболее естественных способов является учет взаимосвязей между коэффициентами из различных субполос. В высокочастотных субполосах имеются обычно большие области с нулевой или малой энергией. Области с высокой энергией повторяют от субполосы к субполосе свои очертания и местоположение. И это неудивительно - ведь они появляются вокруг контуров в исходном изображении - там, где вейвлет-преобразование не может адекватно представить сигнал, что приводит к «утечке» части энергии в ВЧ субполосы. Медленно изменяющиеся, гладкие области исходного изображения хорошо описывают НЧ вейвлет-базисы, что приводит к «упаковке» энергии в малом числе коэффициентов НЧ области. Этот процесс примерно повторяется на всех уровнях декомпозиции, что и приводит к визуальной «похожести» различных субполос.

Итак, априорное знание о том, что изображение состоит из гладких областей, текстур и контуров, помогает учитывать эту межполосную структуру. Кодеры, использующие структуру нульдерева, сочетают учет структуры коэффициентов с совместным кодированием нулей, в результате чего получается очень эффективный алгоритм сжатия.

10.3.1. Алгоритм Льюиса и Ноулеса

Впервые идея нульдерева была предложена А. Льюисом и Г. Ноулесом. В их алгоритме применялась древовидная структура данных для описания вейвлет-коэффициентов (рис. 10.3). Такая структура получается в результате применения двухканального разделимого вейвлет-преобразования. Корневой узел дерева представляет коэффициент масштабирующей функции в самой НЧ области и имеет три отпрыска. Узлы дерева соответствуют вейвлет-коэффициентам масштаба, равного их высоте в дереве. Каждый из узлов имеет четыре отпрыска, соответствующих вейвлет-коэффициентам следующего уровня и того же пространственного расположения. Низом дерева являются листьевые узлы, не имеющие отпрысков.

Рис. 10.3. Зависимости между коэффициентами вейвлет-преобразования изображения, используемые в алгоритме нульдерева

Для каждого из коэффициентов самой НЧ области существует три таких дерева, соответствующих трем порядкам фильтрации, как описано в пункте 10.1.1

Квантование нульдеревом основано на наблюдении, что если коэффициент мал, его отпрыски на дереве зачастую тоже малы. Это объясняется тем, что значимые коэффициенты возникают вблизи контуров и текстур, которые локальны. Нетрудно увидеть, что это является разновидностью предсказания. А.Льюис и Г.Ноулес свели это предсказание к минимуму, предположив, что если какой-либо коэффициент незначимый, то все его потомки также будут незначимыми. Дерево или субдерево, которое содержит (по крайней мере, так предполагается) только незначимые коэффициенты, называется нульде-ревом.

А.Льюис и Г.Ноулес использовали следующий алгоритм квантования вейвлет-коэффициентов. Вначале каждый узел квантуется квантователем, оптимальным для плотности распределения Лапласа. Если значение узла меньше некоторого порога, его потомки игнорируются. Эти потомки будут восстановлены декодером как нули. Иначе осуществляется переход к четырем отпрыскам узла, и процедура повторяется. Если узел не имеет отпрысков (является листом), начинает обрабатываться следующий корневой узел и т.д.

Данный алгоритм является эффективным в силу двух причин. Во-первых, в силу хорошей «упаковки» энергии вейвлет-преобразованием и, во-вторых, за счет совместного кодирования нулей. Для кодирования нулей обычно применяется кодер длин серий. Для повышения эффективности на вход этого кодера коэффициенты должны подаваться в определенном порядке. Например, в JPEG применено зигзагообразное сканирование. Наверное, наиболее важным вкладом этой работы была демонстрация того, что область вейвлет-коэффициентов прекрасно приспособлена для работы кодера длин серий. В самом деле, генерируются большие серии нулей и не надо передавать их длину, так как высота дерева известна. Аналогично JPEG, данный алгоритм является разновидностью скалярного/векторного квантования. Каждый (значимый) коэффициент квантуется отдельно, а символы, соответствующие малым коэффициентам, образуют вектор. Этот вектор состоит из символа нульдерева и последовательности нулей длиной до конца дерева.

Характеристики алгоритма Льюиса и Ноулеса незначительно превосходят JPEG, хотя визуальное качество изображений лучше. Недостатком алгоритма является способ порождения и распознавания нульдеревьев. Как было отмечено, если коэффициент мал, то скорее всего его потомки будут малы, но

может быть, и нет. В случае если это не так, обнуляются значимые коэффициенты, и алгоритм Льюиса и Ноулеса ведет к большим искажениям.

Преимуществом этого алгоритма является его простота. Нульдеревья порождаются путем простого сравнения амплитуд коэффициентов, и не требуется дополнительной информации об их местоположении. Однако эта простота дается ценой невысокой эффективности. Детальный анализ этого взаимообмена привел к появлению следующего поколения кодеров с применением нульдеревьев.

1
Оглавление
email@scask.ru