Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Кривизна и радиус кривизны.Вычислим кривизну и радиус кривизны цепной линии в любой ее точке. Для этого найдем и подставим их выражения в формулы кривизны плоской кривой радиуса кривизны Имеем К
и потому кривизна равна
а радиус кривизны Можно дать простой способ построения центра С кривизны цепной линии в точке М (рис. 15). Заметив, что длина отрезка нормали цепной линии между точкой М на кривой и осью Ох равна радиусу кривизны отложим на нормали в точке М в сторону вогнутости цепной линии отрезок Точка С и есть центр кривизны в точке М. Наименьший радиус кривизны будет в вершине цепной линии , в которой ордината у цепной линии наименьшая. Радиус кривизны в этой точке равен . Эволюта цепной линии. Эволютой кривой называется геометрическое место центров кривизны кривой. Если обозначить через X, К текущие координаты точки эволюты, то параметрические уравнения эволюты кривой в общем виде, как известно, таковы:
Здесь за параметр может быть принят либо х, либо у либо произвольная величина Л через которую выражаются х и у. Для нахождения эволюты цепной линии — (рис. 18) примем за параметр х.
Рис. 18. Вычислим и подставим в, общие уравнения эволюты выражения через х. Так как — то получим:
Исключим параметр х. Из второго уравнения находим Следовательно,
Подставив полученные выражения в первое уравнение, будем иметь уравнение эволюты цепной линии в неявной форме:
Здесь текущие координаты обозначены через вместо
|
1 |
Оглавление
|