Главная > Теплотехнические измерения и приборы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА ЧЕТЫРНАДЦАТАЯ. ИЗМЕРЕНИЕ РАСХОДА И КОЛИЧЕСТВА ЖИДКОСТЕЙ, ГАЗА И ПАРА ПО ПЕРЕПАДУ ДАВЛЕНИЯ В СУЖАЮЩЕМ УСТРОЙСТВЕ

14-1. Основы теории и уравнения расхода

Общие сведения. Одним из наиболее распространенных и изученных является способ измерения расхода жидкостей, газов и пара в трубопроводах по перепаду давления в сужающем устройстве. Сужающее устройство выполняет функции первичного преобразователя, устанавливается в трубопроводе и создает в нем местное сужение, вследствие чего при протекании вещества повышается скорость в суженном сечении по сравнению со скоростью потока до сужения. Увеличение скорости, а следовательно, и кинетической энергии вызывает уменьшение потенциальной энергии потока в суженном сечении. Соответственно статическое давление в суженном сечении будет меньше, чем в сечении до сужающего устройства. Таким образом, при протекании вещества через сужающее устройство создается перепад давления (рис. 14-1-1), зависящий от скорости потока и, следовательно, расхода жидкости. Отсюда следует, что перепад давления, создаваемый сужающим устройством, может служить мерой расхода вещества, протекающего в трубопроводе, а численное значение расхода вещества может быть определено по перепаду давления измеренному дифманометром.

В качестве сужающих устройств для измерения расхода жидкостей, газов и пара широко применяют стандартные диафрагмы, сопла и сопла Вентури. В особых случаях измерения расхода находят также применение не нормализованные типы сужающих устройств.

Диафрагма показана на рис. 14-1-1, а и представляет собой тонкий диск с отверстием круглого сечения, центр которого лежит на оси трубы. Сужение потока начинается до диафрагмы, и на некотором расстоянии за диафрагмой поток достигает

минимального сечения. Далее потоп постепенно расширяетсй до полного сечения трубопровода. На рис. 14-1-1, а сплошной линией представлена кривая, характеризующая распределение давлений вдоль стенки трубопровода; кривая, изображенная штрихпунктирной линией, характеризует распределение давлений по оси трубопровода. Как видно, давление за диафрагмой полностью не восстанавливается.

При протекании вещества через диафрагму за ней в углах образуется мертвая зона, в которой вследствие разности давлений возникает обратное движение жидкости или так называемый вторичный поток. Вследствие вязкости жидкости струйки основного и вторичного потоков, двигаясь в противоположных направлениях, свертываются в виде вихрей. На вихреобразования за диафрагмой затрачивается значительная часть энергии, а следовательно, имеет место и значительная потеря давления. Изменение направления струек перед диафрагмой и сжатие струи после диафрагмы имеют незначительное влияние.

Как видно из рис. 14-1-1, а, отбор давлений осуществляется с помощью двух отдельных отверстий, расположенных непосредственно до и после диска диафрагмы в углах, образуемых плоскостью диафрагмы и внутренней поверхностью трубопровода. Другие способы отбора давлений описаны ниже.

Сопло (рис. 14-1-1, б) выполнено в виде насадки с круглым концентрическим отверстием, имеющим плавно сужающуюся

Рис. 14-1-1. Характер потока и распределение статического давления при установке в трубопроводе диафрагмы (а), сопла (б) и сопла Вентури (в).

часть на входе и развитую цилиндрическую часть на выходе. Профиль сопла обеспечивает достаточно полное сжатие струи, и площадь цилиндрического отверстия сопла может быть принята равной минимальному сечению струи Вихреобразование за соплом вызывает меньшую потерю энергии, чем у диафрагмы. Кривые изменения давления вдоль стенки и по оси трубопровода (пунктирная линия) имеют тот же характер, что и для диафрагмы, но остаточная потеря давления для сопла немного меньше, чем для диафрагмы. Однако следует отметить, что при равных перепадах давления для одного и того же расхода площадь проходного отверстия для диафрагмы больше, чем для сопла, поэтому потеря давления в этом случае практически одинакова. Отбор давлений до и после сопла осуществляется так же, как и у диафрагмы.

На рис. 14-1-1, в представлено сопло Вентури, которое состоит из цилиндрического входного участка, плавно сужающейся части, переходящей в короткий цилиндрический участок, и из расширяющейся конической части — диффузора. В этой форме сужающего устройства главным образом благодаря наличию выходного диффузора потеря давления значительно меньше, чем у диафрагм и сопла (рис. 14-1-1, в). Отбор давлений осуществляется с помощью двух кольцевых камер, каждая из которых соединяется с внутренней полостью сопла Вентури группой равномерно расположенных по окружности отверстий.

Принцип измерения расхода вещества по перепаду давления, создаваемому сужающим устройством, и основные уравнения одинаковы для всех типов сужающих устройств, различны лишь некоторые коэффициенты в этих уравнениях, определяемые опытным путем.

Уравнения расхода для несжимаемой жидкости. Рассмотрим поток жидкости и предположим, что в сечениях и (рис. 14-1-1, а) скорости по всему сечению равны средней скорости и направлены параллельно оси горизонтально расположенной трубы.

Пользуясь общим уравнением закона сохранения энергии

для случая несжимаемой жидкости получим:

где абсолютные давления в сечениях и соответственно, Па; плотность протекающей жидкости перед сужающим устройством, средние скорости потока жидкости в сечениях и соответственно,

Согласно условию непрерывности струи для несжимаемой жидкости

Площадь поперечного сечения струи можно выразить через площадь отверстия сужающего устройства и коэффициент сужения струи

Подставив значение в уравнение (14-1-3), найдем:

или

где площадь отверстия сужающего устройства при рабочей температуре, площадь сечения трубопровода при рабочей температуре, относительная площадь (ранее называемая модулем) сужающего устройства здесь соответственно диаметр отверстия сужающего устройства и трубопровода при рабочей температуре,

Пользуясь уравнениями (14-1-2) и (14-1-5), определяем среднюю скорость в сечении

Давления отнесены к сечениям и в большинстве же случаев давления измеряют непосредственно в углах до и после сужающего устройства. Кроме того, в реальном потоке вследствие вязкости и трения жидкости о стенки имеет место потеря энергии и скорости в различных точках сечения. Поэтому при переходе к действительным условиям, а также вследствие замены давлений давлениями (рис. 14-1-1, с, б) в формулу (14-1-6) вводят поправочный коэффициент и уравнение для средней скорости в наиболее узком сечении потока принимает вид:

Секундный расход в единицах массы для несжимаемой жидкости может быть найден по уравнению

или

Коэффициенты не могут быть определены с достаточной гочностью независимо друг от друга. Поэтому их объединяют в один общий коэффициент

который называют коэффициентом расхода И определяю! экспериментальным путем.

Таким образом, уравнения расхода для несжимаемой жидкости принимают вид:

где расход в единицах объема,

Уравнения расхода для сжимаемой жидкости. В случае измерения расхода сжимаемой жидкости (газа или пара) необходимо учитывать изменение плотности вещества в связи с изменением давления при протекании через сужающее устройство. При этом с достаточной степенью точности можно считать, что изменение состояния газа или пара описывается уравнением адиабатического процесса, т. е.

где показатель адиабаты; С — постоянная величина.

Полагая в уравнении (14-1-1)

получаем:

Подставляя на основании уравнения (14-1-12) в уравнение (14-1-13) значение

получаем:

Уравнение непрерывности потока сжимаемой жидкости для сечений имеет вид:

где через обозначен коэффициент сужения, который отличается от коэффициента сужения для несжимаемой жидкости, так как он зависит от отношения давлений Это происходит потому, что вследствие отсутствия боковых стенок, особенно у диафрагм, газ или пар может расширяться в радиальном направлении.

Следовательно, наименьшее сечение струи потока для сжимаемой жидкости за диафрагмой будет несколько больше, чем для несжимаемой жидкости, так как сжимаемая жидкость будет несколько увеличиваться в объеме вследствие уменьшения давления за сужающим устройством.

Решая уравнение (14-1-15) относительно получаем:

Решая совместно уравнення (14-1-14) и (14-1-16), находим среднюю скорость для сечения

Как и для несжимаемой жидкости, введем коэффициент , после чего уравнение расхода в единицах массы для сжимаемой жидкости примет вид:

Подставляя в правую часть этого уравнения значение

получаем:

Уравнение (14-1-18) можно представить в виде, аналогичном уравнению для несжимаемой жидкости, что более удобно для практических целей:

где перепад давления в сужающем устройстве, Па; поправочный множитель на расширение измеряемой среды,

равный:

здесь

Уравнения (14-1-19) и (14-1-20) отличаются от уравнений для несжимаемой жидкости (14-1-10) и (14-1-11) только поправочным множителем на расширение измеряемой среды. Поэтому уравнения (14-1-19) и (14-1-20) действительны также для несжимаемой жидкости, поскольку для нее поправочный множитель равен единице. Отсюда следует, что одним и тем же значением коэффициента расхода можно пользоваться как для несжимаемых, так и для сжимаемых жидкостей.

Следует отметить, что выведенные уравнения расхода могут применяться в том случае, когда скорость потока в сужающем устройстве не достигает критической, т. е. скорости звука в данной среде.

Наименьшее сечение струи в случае сопл и сопл Вентури может быть принято равным сечению цилиндрической части этих сужающих устройств, т. е. поэтому радиальное расширение струи можно не принимать во внимание, а следовательно, . Таким образом, поправочный множитель на расширение для сопл и сопл Вентури может быть подсчитан по уравнению (14-1-21). Для диафрагм поправочный множитель на расширение должен быть определен экспериментально,

1
Оглавление
email@scask.ru