Главная > Теплотехнические измерения и приборы
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

19-6. Акустические и ультразвуковые уровнемеры

Общие сведения. В акустических и ультразвуковых уровнемерах реализуется метод, основанный на использовании эффекта отражения ультразвуковых колебаний от границы раздела двух сред с различными акустическими сопротивлениями.

В уровнемерах, называемых акустическими, используется метод локаций уровня жидкости через газовую среду. Достоинством этого метода является то, что акустическая энергия, посланная в объект для измерения уровня жидкости, распространяется по газовой среде. Это обеспечивает универсальность по отношению к различным жидкостям, уровень которых необходимо измерить, а также высокую надежность первичных преобразователей, не контактирующих с жидкостью.

В уровнемерах, называемых ультразвуковыми, используется метод, основанный на отражении ультразвуковых колебаний от границы раздела сред со стороны жидкости.

В зависимости от используемого параметра звуковой волны для измерения уровня жидкости различают частотный, фазовый и импульсный способы измерения уровня, а также некоторые их комбинации, такие, как импульсно-частотный, и др. Каждый из указанных способов, обладая общим для акустического (ультразвукового) метода измерения достоинствами, имеет свои преимущества и недостатки.

Акустические уровнемеры широко применяют для дистанционного измерения уровня жидкостей в различных объектах в химической, бумажной, пищевой и других отраслях промышленности. Уровнемеры этого типа могут быть использованы для измерения уровня различных жидкостей (однородных и неоднородных, вязких, агрессивных, кристаллизующихся, выпадающих в осадок), находящихся под давлением до и имеющих температуру от 5 до 80° С. Акустические уровнемеры не могут быть использованы для измерения уровня жидкостей, находящихся под высоким избыточным и вакуумметрическим давлением. Если жидкость, уровень которой необходимо измерять, будет находиться под вакуумметрическим давлением до то акустические уровнемеры могут быть использованы.

Ультразвуковые уровнемеры могут быть использованы для измерения уровня только однородных жидкостей и широкого распространения в промышленности не получили. Однако ультразвуковые уровнемеры позволяют измерять уровень однородных жидкостей, находящихся под высоким избыточным давлением.

Акустический уровнемер ЭХО-1. Уровнемер ЭХО-1, разработанный НИИтеплоприбором, предназначен для измерения уровня различных жидкостей на основе метода акустической импульсной лакацип границы раздела сред со стороны газа [83]. Мерой уровня жидкости является время распространения ультразвуковых колебаний от источника излучения (акустического

преобразователя) до плоскости границы раздела сред и обратно до приемника.

Схема акустического уровнемера представлена на рис. 19-6-1. В соответствии с принятыми на этой схеме обозначениями время распространения ультразвуковых колебаний определяется-выражением

где высота газового столба; расстояние от источника излучения до нулевого уровня; -высота уровня жидкости; а — скорость распространения звука в газовой среде.

Рис. 19-6-1. Схема акустического уровнемера

В акустическом уровнемере генератор 9 вырабатывает электрические импульсы с определенной частотой повторения, преобразуемые в ультразвуковые при помощи акустического преобразователя 1, установленного на крышке резервуара. Распространяясь вдоль акустического тракта, ультразвуковые импульсы отражаются от плоскости границы раздела сред и попадают на тот же преобразователь 1. Отраженные ультразвуковые импульсы после обратного преобразования в электрические усиливаются, формируются усилителем-формирователем 2 и подаются на устройство измерения времени запаздывания отраженного сигнала — триггер 3.

Формирование унифицированного выходного сигнала постоянного тока осуществляется при помощи компенсационного преобразователя, основанного на принципе статического регулятора, в состав которого входит устройство сравнения 4, усилительно-преобразующее устройство и элемент обратной связи — блок преобразования напряжения во временной интервал 6.

Формирование выходного сигнала осуществляется путем автоматического слежения блоком 6 за длительностью импульсов с триггера. Прямоугольные импульсы с триггера и из цепи обратной связи компенсационного преобразователя (блока 6) подаются на

устройство сравнения 4. рели длительность импульса с триггера больше (или меньше) импульса из цепи обратной связи, то на выходе блока 4 появляется сигнал небаланса, который при помощи усилительно-преобразующего устройства 5 повышает (или уменьшает) значение выходного сигнала. Это происходит до тех пор, пока сигнал небаланса не уменьшится до нуля. Слежение происходит именно за длительностью импульсов, поэтому амплитуда и частота повторения их не влияют на значение выходного сигнала. На показаниях уровнемера не сказывается также изменение в широком диапазоне нагрузки преобразователя.

Для уменьшения влияния изменения температуры газа на показания прибора (скорость распространения звука в газовой среде зависит от температуры) уровнемер содержит блок температурной компенсации 10, который включает в себя термометр сопротивления, расположенный внутри акустического преобразователя.

В схеме уровнемера предусмотрено помехозащитное устройство 7, исключающее влияние на показания прибора различного рода помех на входе усилителя 2.

Для проверки работоспособности электрической схемы уровнемера используется блок контроля 8. Основные функциональные узлы электрической схемы прибора выполнены на основе унифицированных интегральных схем.

Акустический уровнемер изготовляемый серийно заводом «Теплоприбор» (Рязань), выпускается на диапазоны измерения . Класс точности уровнемера - 2,5.

Ультразвуковой уровнемер. В рассматриваемом ультразвуковом уровнемере используется импульсный способ измерения уровня по отражению ультразвуковых колебаний от границы раздела сред со стороны жидкости. Мерой уровня жидкости в этом случае является также время прохождения ультразвуковых колебаний от пьезометрического преобразователя (излучателя) до плоскости границы раздела сред (жидкость — газ) и обратно до приемника. Время прохождения ультразвуковых колебаний определяется выражением

где а — скорость распространения звука в жидкости.

Пауза между двумя последовательными посылаемыми импульсами определяется выражением

Схема ультразвукового уровнемера приведена на рис. 19-6-2. Уровнемер состоит из пьезометрического преобразователя 1, электронного блока 7 и вторичного прибора 5. Электронный блок включает в себя генератор 6, задающий частоту повторения импульсов; генератор импульсов 2, посылаемых в жидкость, уровень которой измеряется; приемного устройства — усилителя схемы

измерения времени 4. Генератор, задающий частоту повторения импульсов, управляет работой генератора импульсов и схемой измерения времени. Генератор 2 вырабатывает электрические импульсы с определенной частотой повторения, которые преобразуются в ультразвуковые при помощи пьезометрического преобразователя, установленного с внешней стороны дна резервуара. Распространяясь в жидкой среде, ультразвуковые импульсы отражаются от плоскости границы раздела жидкость — газ и поступают на тот же пьезометрический преобразователь. Отраженные импульсы после обратного преобразования в электрические усиливаются и формируются усилителем 3 и подаются на схему измерения времени. Выходным сигналом измерительной схемы являются постоянное напряжение, которое поступает на вход вторичного прибора 5. В качестве вторичного прибора может быть использован автоматический потенциометр.

Рис. 19-6-2. Схема ультразвукового уровнемера.

Предел допускаемой основной погрешности ультразвукового уровнемера не превышает 2,5% диапазона измерения уровня жидкости,

Categories

1
Оглавление
email@scask.ru