Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
22-2. Измерение удельной электропроводности водных растворовОсновные сведения. Измерение удельной электропроводности водных растворов получило широкое распространение в лабораторной практике, при автоматическом химическом контроле водного режима паросиловых установок, эффективности работы установок очистки воды и промышленных теплообменных и других установок, а также различных показателей качества, характеризующих химикотехнологические процессы. Технические средства, предназначенные для измерения удельной электропроводимости водных растворов, принято называть кондуктометрическими анализаторами жидкости. Шкалу вторичных приборов кондуктометров жидкости (лабораторных и промышленных) для измерения удельной электропроводности градуируют в единицах сименс на сантиметр При повышенных требованиях к показателям качества питательной воды, пара и конденсата необходимо производить измерение малых значений электропроводности, не превышающих 5—б Измерение электропроводности водных растворов обычно производят с помощью электродного кондуктометрического измерительного преобразователя, состоящего из двух электродов, расположенных в сосуде, в который поступает контролируемый водный раствор. Устройство этих преобразователей и применяемые измерительные схемы кондуктометров жидкости рассматриваются ниже. Для измерения электропроводности растворов широко применяют также безэлектродные кондуктометры жидкости. Удельная электропроводность представляет собой величину, обратную удельному сопротивлению:
Здесь
где Согласно уравнению (22-2-2) выражение (22-2-1) принимает вид:
где Из выражения (22-2-3) имеем:
Для преобразователей с простой конфигурацией электродов постоянная Следует отметить, что на основании изучения удельной электропроводимости мы не имеем возможности производить сравнение значений электропроводимости растворов между собой в зависимости от их концентрации. Это становится возможным при введении понятия эквивалентной электропроводности. Кольрауш эквивалентной электропроводностью назвал величину
где Значение электропроводности растворов зависит не только от эквивалентной концентрации и эквивалентной электропроводности, но также и от степени электролитической диссоциации раствора. Следовательно, в общем случае, когда не все молекулы распались на ионы, для удельной электропроводности получим следующее уравнение:
Здесь
Рис. 22-2-1. Зависимость электропроводности водных растворов некоторых веществ от их концентрации при 18° С. Уравнение (22-2-6) можно представить в следующем виде:
где Подвижности ионов представляют собой произведение их абсолютной скорости Электропроводность водных растворов находится в сложной зависимости от концентрации раствора. На рис. 22-2-1 представлены зависимости удельной электропроводности к водных растворов некоторых веществ от их концентрации. Из этого графика видно, что однозначная зависимость между электропроводностью раствора и концентрацией имеет место лишь в том случае, если измерения электропроводности выполняются в области сравнительно низких концентраций. Концентрации растворенных веществ, которые приходится определять при контроле качества пара, конденсата, питательной и котловой воды, соответствуют начальным участкам приведенных на рис. 22-2-1 кривых, где удельная электропроводность непрерывно увеличивается с ростом концентраций. При измерении электропроводности конденсата пара и питательной воды, являющихся водными растворами с очень малой концентрацией солей, степень электролитической диссоциации можно принять равной единице. В этом случае для определения электропроводности можно использовать упрощенное уравнение
Здесь
где Значения При измерении электропроводности необходимо учитывать влияние температуры раствора на показания прибора, так как с изменением температуры раствора на 1°С его электропроводность изменяется на Зависимость электропроводности водных растворов от температуры
При температуре
где
Здесь Температурный коэффициент электропроводности
Зависимость электрического сопротивления фиксированного объема раствора между электродами преобразователя от температуры
При температуре
При контроле водного режима электростанций концентрацию солей обычно выражают в миллиграммах на литр
где
Здесь Выше отмечалось, что градуировка кондуктометров жидкости (солемеров) производится по Электропроводность водного раствора
Подставляя в это выражение значения
Градуировку кондуктометров жидкости (солемеров) обычно производят при нормальной температуре
Подставляя в это уравнение значения
Электрическое сопротивление фиксированного объема раствора
В конденсате пара и питательной воде парогенераторов кроме небольшого количества солей обычно присутствуют растворенные газы — аммиак Дополнительное устройство в виде дегазатора для удаления из пробы растворенных газов не исключает влияния на показания кондуктометрического анализатора гидразина. Применяемый в настоящее время фильтр, заполненный катионитом марки Электродные кондуктометрические преобразователи. Электродные преобразователи, применяемые для измерения электропроводности растворов, изготовляют для лабораторных исследований различных растворов и для технических измерений. Измерения в лабораторных условиях производят на переменном токе. При этом необходимо отметить, что кондуктометрический метод измерения на переменном токе остается общепринятым в повседневной лабораторной практике. Технические измерения электропроводности растворов с использованием электродных преобразователей производят, как правило, на переменном токе с частотой 50 Гц. Устройство, размеры, а следовательно, и постоянная электродных преобразователей в существенной степени зависят от измеряемого значения электропроводности раствора. В технических измерениях наиболее распространены преобразователи с цилиндрическими коаксиальными и в меньшей степени — с плоскими электродами. Устройство преобразователей с цилиндрическими коаксиальными электродами схематично показано на рис. 22-2-2. У преобразователя, представленного на рис. 22-2-2, а, наружный цилиндрический электрод является одновременно и корпусом его. Второй преобразователь (рис. 22-2-2, б) имеет также цилиндрические коаксиальные электроды, но они расположены в стальном его корпусе, к которому приварен один электрод. Этот преобразователь используется в солемерах ЦКТИ с малогабаритными концентраторами [101]. В преобразователь через левый штуцер из концентратора поступает дегазированная и обогащенная проба, имеющая постоянную температуру, близкую к 100° С. Верхний штуцер преобразователя соединяют стальной трубой с паровым пространством малогабаритного концентратора, солемера. Схема устройства преобразователя с плоскими электродами приведена на рис. 22-2-3. Особенность преобразователя, показанного на рис. 22-2-3, заключается в том, что площади его электродов и эффективного сечения раствора, через которое протекает ток, неодинаковы.
Рис. 22-2-2. Устройство преобразователей с цилиндрическими коаксиальными электродами. 1 — зажимы для присоединения проводов; 2 — электроды; 3 — стальной корпус; 4 — изоляторы.
Рис. 22-2-3. Устройство преобразователя с плоскими электродами. 1 — корпус преобразователя; 2 — зажимы для присоединения проводов; 3 — электроды. Кроме рассмотренных проточных электродные преобразователи выполняют также погружного типа, непосредственно погружаемые в трубопровод с жидкостью, электропроводность (или концентрацию) которой необходимо контролировать. Электроды преобразователей для технических измерений выполняют из нержавеющей стали марки На электродах преобразователя, соприкасающихся с раствором, протекают сложные электрохимические процессы. Пространство между электродами заполнено при измерении электропроводности водных растворов средой с высоким значением диэлектрической проницаемости. По этим причинам фиксированный объем раствора между электродами преобразователя при измерении на переменном токе представляет комплексное электрическое сопротивление — комбинацию активных и емкостных составляющих. Эквивалентная электрическая схема электродного преобразователя с учетом электродных процессов представлена на рис. 22-2-4. К электродным процессам относятся процесс электролиза раствора при прохождении через него электрического тока и процесс образования двойного электрического слоя на границе раздела сред «металл электрода — раствор». Образование двойного электрического слоя происходит за счет воздействия внешнего электрического поля, неравенства химических потенциалов ионов металла электродов и ионов в растворе и специфической адсорбции ионов и полярных молекул. В цепи переменного тока двойной электрический слой эквивалентен электрической емкости
Рис. 22-2-4. Эквивалентная электрическая схема электродного преобразователя. Эквивалентная электрическая схема процесса поляризации представляется в общем случае нелинейным активно-емкостным сопротивлением
где
Рис. 22-2-5. Упрощенная эквивалентная электрическая схема электродного преобразователя. Рассмотрим упрощенную эквивалентную электрическую схему электродного преобразователя, которая не учитывает эффекта электролиза. В этом случае полное сопротивление преобразователя будет определяться, как это следует из схемы, показанной на рис. 22-2-5, емкостями двойного слоя на электродах Используя известное соотношение, которое определяет модуль емкостного сопротивления При допущении, что активное сопротивление не зависит от частоты напряжения на электродах, легко заметить, что с возрастанием со относительное влияние емкости двойного слоя на модуль полного сопротивления уменьшается, а «конструктивной» емкости расположения и расстояния между ними. Действительно, конструктивные изменения влияют практически в равной степени на активное сопротивление преобразователя и на значение емкости Для уменьшения влияния на точность измерения электропроводности растворов поляризации электродов применяют четырехэлектродные преобразователи, например, в кондуктометрических анализаторах для чистых водных растворов применяют преобразователи типов
Рис. 22-2-6. Принципиальная схема электродного преобразователя с температурной компенсацией. Способы температурной компенсации и типовые измерительные схемы кондуктометрических анализаторов. Температурная компенсация осуществляется с помощью дополнительных элементов в цепи электродного преобразователя или в измерительной схеме кондуктометра жидкости, уменьшающих влияние отклонения температуры раствора от 20° С на показания прибора. Автоматическая температурная компенсация не исключает полностью влияния температуры раствора на показания прибора, что представляет большие трудности, но значительно его уменьшает. Из числа применяемых способов автоматической температурной компенсации в кондуктометрах жидкости наиболее часто используется электродный преобразователь с температурной компенсацией, схема которого показана на рис. 22-2-6. Схема температурной компенсации электродного преобразователя образована параллельно и последовательно включенными с сопротивлением раствора электрод преобразователя (рис. 22-2-2, а). Резистор
Рис. 22-2-7. Зависимость полного сопротивления цепи преобразователя Расчет параметров схемы температурной компенсации обычно производится из условия полной температурной компенсации для двух заданных концентраций Полное сопротивление цепи преобразователя относительно зажимов А к В (см. рис. 22-2-6) при концентрации раствора С и температуре его
или
Здесь, а также в последующих уравнениях, индексами указано, к какой концентрации раствора и температуре относятся рассматриваемые величины (сопротивление
где
В последних двух выражениях В целях удобства выполнения расчета параметров схемы температурной компенсации представим равенства (22-2-25) в следующем виде:
Решая эти уравнения, в которых заданными величинами являются
Пользуясь уравнением (22-2-26) с учетом выражений (22-2-3) и (22-2-4) получаем:
Из уравнения (22-2-27) с учетом (22-2-4) после несложных преобразований найдем:
При расчете схемы температурной компенсации при заданных значениях
Градуировочная характеристика кондуктометра жидкости при температуре
где Рассмотрим схемы измерения электропроводности водных растворов и способы температурной компенсации, осуществляемые включением компенсирующего элемента в измерительную схему кондуктометра жидкости. Для измерения электропроводности (концентрации) водных растворов электродными преобразователями широко применяют вторичные приборы с мостовой измерительной схемой, выполняемые на базе автоматических уравновешенных мостов На рис. 22-2-8 приведена принципиальная схема кондуктометра жидкости, состоящего из электродного преобразователя ЭП и автоматического уравновешенного моста. На схеме приняты следующие обозначения:
Рис. 22-2-8. Принципиальная схема кондуктометра жидкости с использованием электродного преобразователя (рис. 22-2-2, 6). Рассмотренная мостовая измерительная схема вторичного прибора кондуктометра жидкости может быть использована также для измерения электропроводности водных растворов электродным преобразователем с температурной компенсацией (см. рис. 22-2-6), если его присоединить к зажимам Рассмотрим способ температурной компенсации с помощью терморезистора, включаемого в измерительную схему автоматического уравновешенного моста кондуктометра жидкости (рис. 22-2-9). Здесь электродный преобразователь ЭП включен в измерительную мостовую схему вторичного прибора, так же как на рис. 22-2-8. При этом приведенное сопротивление преобразователя
Рис. 22-2-9. Принципиальная схема кондуктометра жидкости с использованием терморезистора для температурной компенсации. При измерении электропроводности терморезистор имеет ту же температуру, что и анализируемый раствор, так как он обычно монтируется внутри корпуса преобразователя. Точность температурной компенсации будет определяться степенью согласованности температурных коэффициентов терморезистора Рассмотренная температурная компенсация с помощью терморезистора, включенного в измерительную мостовую схему, используется в применяемых кондуктометрических анализаторах жидкости. Температурная компенсация может быть также осуществлена с помощью дополнительного электродного преобразователя, который заполнен водным раствором, имеющим температурный коэффициент сопротивления, близкий температурному коэффициенту анализируемого раствора [98]. В этом случае рабочий и компенсирующий преобразователи включают в смежные плечи измерительной схемы моста. При этом компенсирующий преобразователь омывается снаружи анализируемым раствором и имеет с ним одинаковую температуру. Этот способ температурной компенсации не получил широкого распространения, так как свойства раствора в компенсационном преобразователе со временем изменяются. Автоматические уравновешенные мосты, предназначенные для работы в комплекте с электродными преобразователями, могут быть снабжены дополнительным устройством для сигнализации (регулирования) предельных значений электропроводности водных растворов электролитов. Кроме рассмотренных анализаторов жидкости с электродными преобразователями выпускаются кондуктометр ический анализатор АК класса точности 5, разработанный СКБ АП, с выходным сигналом постоянного тока
|
1 |
Оглавление
|