Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.4. МАТЕМАТИЧЕСКИЕ МОДЕЛИ КАНАЛОВ СВЯЗИДля того чтобы дать математическое описание канала, необходимо и достаточно указать множество сигналов, которые могут быть поданы на его вход, и для любого допустимого входного сигнала задать случайный процесс (сигнал) на выходе канала. Задание процесса понимается в том смысле, как это было определено в § 2.1, и сводится к заданию в той или иной форме распределения вероятностей. Точное математическое описание любого реального канала обычно оказывается весьма сложным. Вместо этого пользуются упрощенными математическими моделями, которые позволяют выявить все важнейшие закономерности реального канала, если при построении модели учтены наиболее существенные особенности канала и отброшены второстепенные детали, мало влияющие на ход связи. Рассмотрим наиболее простые и широко используемые математические модели каналов, начав с непрерывных каналов, поскольку они во многом предопределяют и характер дискретных каналов. Идеальный канал без помех представляет собой линейную цепь с постоянной передаточной функцией, обычно сосредоточенной в ограниченной полосе частот. Допустимы любые входные сигналы, спектр которых лежит в определенной полосе частот Канал с аддитивным гауссовским шумом, в котором сигнал на выходе
где Обычно запаздывание Некоторое усложнение этой модели получается, если коэффициент передачи
Такая модель удовлетворительно описывает многие проводные каналы, радиоканалы при связи в пределах прямой видимости, а также радиоканалы с медленными общими замираниями, при которых можно надежно предсказать значения Канал с неопределенной фазой сигнала отличается от предыдущего тем, что в нем запаздывание является случайной величиной. Для узкополосных сигналов, с учетом (2.69) и (3.2), выражение (3.29) при постоянном
где Однолучевой гауссовский канал с общими замираниями (флуктуациями амплитуд и фаз сигнала) также описывается формулой (3.30), но множитель К, как и фаза
При изменении квадратурных компонент
Как отмечалось на с. 94, одномерное распределение коэффициента передачи Линейный канал со случайной передаточной функцией и гауссовским шумом представляет собой дальнейшее обобщение. В талом канале выходное колебание
Эта модель достаточно универсальна как для проводной, так и для радиосвязи и описывает каналы с рассеянием во времени по частоте. Часто рассеянию во времени канала можно приписать дискретный характер (модель многолучевого канала) и вместо (3.33) пользоваться представлением
где Канал с рассеянием Каналы со сложной аддитивной помехой (флуктуационной, сосредоточенной, импульсной) описываются любой из предыдущих моделей с добавлением дополнительных компонент аддитивной помехи. Их полное описание требует задания вероятностных характеристик всех компонент аддитивного шума, а также параметров канала. Эти модели наиболее полно отображают реальные каналы связи, однако редко используются в анализе ввиду их сложности. Переходя к моделям дискретного канала, полезно напомнить, что в нем всегда содержится непрерывный канал, а также модем. Последний можно рассматривать как устройство, преобразующее непрерывный канал в дискретный. Поэтому, в принципе, можно вывести математическую модель дискретного канала из моделей непрерывного канала и модема. Такой подход часто является плодотворным, однако он приводит к довольно сложным моделям. Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Следует, однако, помнить, что при проектировании системы связи имеется возможность варьировать в довольно широких пределах модель дискретного канала при заданной модели непрерывного канала путем изменения модема. Модель дискретного канала содержит задание множества возможных сигналов на его входе и распределение условных вероятностей выходного сигнала при заданном входном. Здесь входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число В общем случае для любого Введем еще одно полезное определение. Будем называть вектором ошибки поразрядную разность (разумеется, по модулю
где Перечислим наиболее важные и достаточно простые модели дискретных каналов. Симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью
Термин «без памяти» означает, что вероятность ошибочного приема символа не зависит от предыстории, т. е. от того, какие символы передавались до него и как они были приняты. В дальнейшем, для сокращения, вместо «вероятность ошибочного приема символа» будем говорить «вероятность ошибки». Очевидно, что вероятность любого
где I — количество ненулевых символов в векторе ошибки (вес вектора ошибки). Вероятность того, что произошло I каких угодно ошибок, расположенных как угодно на протяжении последовательности длины
где Эту модель называют также биномиальным каналом. Она удовлетворительно описывает канал, возникающий при определенном выборе модема, если в непрерывном канале отсутствуют замирания, а аддитивный шум белый (или, по крайней мере, квазибелый). Вероятности переходов в двоичном симметричном канале схематически показаны в виде графа на рис. 3.3.
Рис. 3.3. Переходные вероятности в двоичном симметричном канале
Рис. 3.4. Переходные вероятности в двоичном симметричном канале со стиранием
Рис. 3.5. Переходные вероятности в двоичном несимметричном канале Симметричный канал без памяти со стиранием отличается от предыдущего тем, что алфавит на выходе канала содержит дополнительный символа. За счет введения стирания удается значительно снизить вероятность ошибки, иногда ее даже считают равной нулю. На рис. 3.4 схематически показаны вероятности переходов в такой модели. Несимметричный канал без памяти характеризуется, как и предыдущие модели, тем, что ошибки возникают в нем независимо друг от друга, однако вероятности ошибок зависят от того, какой символ передается. Так, в двоичном несимметричном канале вероятность Марковский канал представляет собой простейшую модель дискретного канала с памятью. В ней вероятность ошибки образует простую цепь Маркова, т. е. зависит от того, правильно или ошибочно принят предыдущий символ, но не зависит от того, какой символ передается. Такой канал, например, возникает, если в непрерывном канале с гауссовским шумом (с определенной или неопределенной фазой) используется относительная фазовая модуляция (см. ниже, § 4.5). Канал с аддитивным дискретным шумом является обобщением моделей симметричных каналов. В такой модели вероятность вектора ошибки Частным случаем такого канала является канал с переменным параметром (КПП). В этой модели вероятность ошибки для каждого символа является функцией некоторого параметра Канал с неаддитивным шумом и с памятью. Канал с межсимвольной интерференцией. Вероятность ошибки в нем зависит от передаваемых символов, как и в модели несимметричного канала без памяти, но не от того (или не только от того) символа, для которого определяется вероятность ошибки, а от символов, которые передавались до него.
|
1 |
Оглавление
|