Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА ПЯТАЯ. ОСНОВЫ ТЕОРИИ КОДИРОВАНИЯ5.1. НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ КОДОВВ этой главе рассматривается кодирование сообщений, передаваемых в дискретном канале, или кодирование в узком смысле. Дискретный канал образуется из непрерывного путем включения в канал модема. На вход модулятора и с выхода демодулятора поступают дискретные кодовые символы (например, в форме импульсов), одинаковые или различные. Будем обозначать кодовые символы числами Пусть источник выдает некоторое дискретное сообщение а, которое можно рассматривать как последовательность элементарных сообщений В простейшем случае, когда объем алфавита источника I равен основанию кода цвета. Чаще применяют более сложные коды, основное назначение которых заключается в согласовании источника сообщений с дискретным каналом по объему алфавита и по избыточности. Согласование по объему необходимо во всех случаях, когда объем алфавита источника I не совпадает с количеством различных символов Остановимся подробнее на согласовании источника с каналом по избыточности. Пусть случайное сообщение А заменяется кодовой последовательностью В. Поскольку считаем кодирование обратимым, то, в соответствии с (2.141) и (2.142),
где Иначе обстоит дело с избыточностью, определяющей соотношение между энтропией и ее максимальным значением (при данном алфавите). Избыточность может при кодировании как возрастать, так и уменьшаться. Пусть, например, избыточность источника велика, т. е. Не будем возвращаться к методам эффективного кодирования. Отметим только некоторые свойства кодовой последовательности, в которой полностью устранена избыточность. В любом месте такой последовательности все символы появляются равновероятно и независимо от значений других символов. В противном случае энтропия на символ последовательности не имела бы максимального значения Избыточность в передаваемом сообщении позволяет в некоторых случаях обнаруживать и исправлять ошибки. Искаженная кодовая последовательность может иметь нулевую или очень близкую к нулю вероятность, что указывает на наличие ошибки. Если определить, какая из возможных переданных последовательностей наиболее правдоподобна, можно во многих случаях ошибки исправить. Именно так читатель исправляет опечатки в книге «по контексту», а получатель телеграмм догадывается о ее подлинном содержании даже при нескольких ошибочно переданных буквах. Если при кодировании не устранять, а наоборот, вводить избыточность, то должны увеличиться возможности обнаружения и исправления ошибок. Такое кодирование называется помехоустойчивым, или корректирующим. Ему посвящена основная часть этой главы. При помехоустойчивом кодировании чаще всего считают, что избыточность источника на входе кодера эффективного кодирования, а затем методами помехоустойчивого кодирования внести такую избыточность в сигнал, которая позволит достаточно простыми средствами поднять верность. Из сказанного видно, что экономное кодирование вполне может сочетаться с помехоустойчивым. Теория кодирования за последние тридцать лет развивалась весьма интенсивно на основе современных математических методов. В настоящей книге затронуты лишь общие принципы теории кодирования. Вопросы построения используемых на практике кодов, а также технической реализации кодирующих и декодирующих устройств рассматриваются в специальных курсах. Коды можно классифицировать по различным признакам. Одним из них является основание кода Далее коды можно разделить на блочные и непрерывные. Блочными называют коды, в которых последовательность элементарных сообщений источника разбивается на отрезки и каждый из них преобразуется в определенную последовательность (блок) кодовых символов В настоящее время на практике чаще всего используются блочные коды, равномерные и неравномерные. В равномерных кодах, в отличие от неравномерных, все кодовые комбинации содержат одинаковое число символов (разрядов), передаваемых по каналу элементами сигнала неизменной длительности. Это обстоятельство существенно упрощает технику передачи и приема сообщений и повышает помехоустойчивость системы синхронизации. Число различных блоков
Если в (5.2) имеет место равенство, т. е. все возможные кодовые комбинации используются для передачи сообщений, то в этом случае код называется простым, или примитивным. Он не вносит избыточности и поэтому не является помехоустойчивым. Избыточностью равномерного кода
а относительной скоростью кода
Если все блоки равномерного кода передавать равновероятно и независимо друг от друга, то В дальнейшем будем рассматривать, главным образом, двоичные коды Напомним, что расстоянием Хэмминга между двумя кодовыми
|
1 |
Оглавление
|