Главная > Металловедение (Гуляев А. П.)
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

7. Влияние термической обработки на свойства стали

В результате термической обработки существенно изменяются свойства стали. Наибольшее значение имеют механические свойства.

В отожженном, нормализованном или отпущенном состоянии сталь состоит из пластичного феррита и включений карбидов (цементита). Феррит обладает низкой прочностью и высокой пластичностью, цементит же при нулевом значении

удлинения и сужения имеет высокую твердость (около ). Более высокое значение прочности и меньшая пластичность сплавов с содержанием углерода выше очевидно, объясняется упрочняющим действием карбидных включений. Поскольку пластической деформации (при том или ином виде нагружения) может подвергаться только феррит, упрочняющее действие твердых карбидных включений можно представить следующим образом.

При малом количестве цементитных включений (рис. 221, а) пластическая деформация развивается относительно беспрепятственно, и свойства материала характеризуются невысокой твердостью.

Рис. 221. Влияние твердых частиц на твердость и пластичность

Рис. 222. Твердость стали в зависимости от содержания углерода и температуры закалки: 1 — нагрев выше ; 2 — нагрев только выше (770 °С); 3 — микротвердость мартенсита

Если таких частиц будет больше, например если при термической обработке измельчаются частицы цементита (рис. 221, б), то вокруг этих частиц возникает искажение кристаллической решетки, что препятствует движению дислокаций, и сталь упрочняется. Наоборот, в результате укрупнения этих частиц (рис. 221, в) освободятся некоторые объемы феррита для движения дислокаций, и способность стали к пластической деформации увеличится.

Таким образом, твердость (прочность) феррито-цементитной (или другой двухфазной) смеси будет складываться из природной твердости основы плюс приращение твердости за счет объемов металла с искаженной решеткой, которое в первом приближении пропорционально поверхности раздела фаз, т. е. , где — число твердости сплава и основы соответственно; — поверхность раздела фаз; а — коэффициент.

Если твердость выражать в единицах Бринелля, а поверхность раздела фаз в (подсчитывается, исходя из среднего размера частиц и их количества в ), то для стали с зернистыми включениями цементита а для стали с пластинчатыми включениями (пластинчатый перлит) — твердость чистого железа, равная

Таким образом объясняется изменение твердости в отожженной (нормализованной) или отпущенной стали, имеющей структуру ферритоцементитной смеси разной дисперсности. Но объяснить так высокую твердость мартенсита нельзя. Высокая твердость мартенсита объясняется тем, что элементарные кристаллические ячейки его искажены, вследствие чего пластическая деформация затруднена и образование сдвигов в мартенсите почти невозможно. Чем больше углерода в стали, тем больше искаженность тетрагональной решетки

мартенсита и больше его твердость. Твердость мартенсита зависит в первую очередь от содержания в мартенсите (в стали) углерода. Мартенсит в стали, содержащей , имеет твердость примерно При твердость мартенсита достигает максимального значения и при дальнейшем увеличении содержания углерода она существенно не увеличивается (рис. 222, кривая 2). Впрочем, эта кривая не характеризует твердость закаленной стали, так как сталь, кроме мартенсита, содержит то или иное количество остаточного аустенита. Если нагрев под закалку был произведен выше точки и весь углерод был переведен в твердый раствор, то твердость закаленной стали при увеличении содержания углерода свыше снижается из-за возрастания количества остаточного аустенита (рис. 222, кривая 1).

Нагрев под закалку до обычных температур, т. е. до переводит в раствор у всех заэвтектоидных сталей одинаковое количество углерода (в соответствии с линией диаграммы железо—углерод) и поэтому фиксируется одинаковое количество остаточного аустенита. Твердость в этом случае для всех заэвтектоидных сталей получается одинаковая (рис. 222, кривая 2).

Кроме твердости, большое значение имеет пластичность (вязкость) стали. Чем выше твердость, тем, как правило, ниже пластичность и вязкость. Однако и при одинаковой твердости показатели пластических и вязких свойств могут сильно колебаться в зависимости от структуры и размеров пластин мартенсита. Обычно с укрупнением структуры пластические и вязкие свойства снижаются.

Описанный в этой главы механизм мартенситного превращения — бездиффузионность и ориентированность — обусловливает большую зависимость структуры мартенсита от исходной структуры аустенита. Как и сдвиг при пластической деформации, так и мартенситная пластина развивается внутри зерна аустенита, разрастаясь от края до края. Значит, чем крупнее зерно аустенита, тем длиннее образующиеся мартенситные пластины. На рис. 223 показано, что в крупном зерне аустенита образовались крупные иглы мартенсита, а в мелких зернах аустенита — мелкие мартенситные иглы. Поскольку пластические свойства и особенно вязкость мартенсита и продуктов его распада (до тех температур отпуска, при которых сохраняется игольчатость микроструктуры) с огрублением структуры сильно ухудшаются (твердость практически не зависит от размера игл мартенсита), описанная зависимость свойств термически обработанной стали от размера пластин мартенсита имеет большое значение.

Для получения высокого комплекса механических свойств следует стремиться к тому, чтобы после закалки получалась мелкоигольчатая мартенситная структура, что достигается лишь при исходной мелкозернистой аустенитной структуре.

Как было отмечено, снижение температуры изотермического распада аустенита приводит к увеличению дисперсности феррито-цементитных частиц и к повышению вследствие этого твердости. Следовательно, перлит, т. е. продукт превращения аустенита при имеет меньшую твердость, чем сорбит, получающийся в результате распада аустенита при Примерная твердость различных структур, полученных при изотермическом распаде аустенита, была указана на рис. 190.

Отпуск — заключительная операция термической обработки, придающая стальному изделию окончательные свойства, поэтому свойства отпущенных сталей рассмотрим подробнее. Изменение твердости сталей с разным содержанием углерода в зависимости от температуры отпуска показано на рис. 224.

Изменение твердости при отпуске является следствием изменений в строении, происходящих при отпуске. Нагрев до 100 °С сопровождается слабым повышением твердости (на вследствие превращения тетрагонального мартенсита в отпущенный (это слабое повышение твердости наблюдается лишь в высокоуглеродистых сталях). С дальнейшим повышением температуры отпуска твердость падает, вследствие укрупнения карбидных частиц и обеднения углеродом а-твердого раствора.

Рис. 223. Иглы мартенсита в разных по рааиеру аустенитных зернах,

Рис. 224. Зависимость твердости от температуры отпуска (углеродистые стали с различным содержанием углерода)

Прямолинейная зависимость падения твердости от температуры нарушается в районе т. е. при превращении остаточного аустенита. При этих температурах падение твердости замедляется, а в высокоуглеродистых сталях наблюдается даже некоторое повышение вследствие превращения остаточного аустенита в более твердый отпущенный мартенсит.

Общая тенденция состоит в том, что твердость с повышением температуры отпуска падает, так же как и другие показатели прочности тогда как показатели пластичности возрастают (рис. 225). Однако изменение этих свойств с повышением температуры отпуска не монотонно. На рис. 225 отметки на левой шкале отвечают свойствам в закаленном (неотпущенном) состоянии, на правой — в отожженном состоянии.

Отпуск при 300 °С приводит к повышению предела прочности и предела упругости. Эти характеристики вследствие напряженного состояния стали в закаленном состоянии или при отпуске при низкой температуре получаются пониженными.

Показатели пластичности увеличиваются с повышением температуры отпуска. Наибольшая пластичность соответствует отпуску при когда весь комплекс механических свойств

выше, чем у отожженной стали. Отпуск выше 650 °С уже не повышает пластичность

Более высокие механические свойства закаленной и высокоотпущенной стали по сравнению с отожженной или нормализованной (при равной прочности у закаленной и высокоотпущенной выше) объясняются различным строением сорбита (перлита) отпуска и сорбита закалки, имеющих, как указывалось выше, в первом случае зернистое, а во втором — пластинчатое строение. Двойная термическая обработка, состоящая в закалке с последующим высоким отпуском, существенно улучшающая общий комплекс механических свойств, является основным видом термической обработки конструкционных сталей и называется улучшением (термическим улучшением).

Рис. 225. Механические свойства стали 40 в зависимости от температуры отпуска

Ударная вязкость стали в зависимости от температуры отпуска изменяется следующим образом. У закаленной углеродистой стали при обычном испытании на ударный изгиб вязкость сохраняется низкой вплоть до температуры отпуска 400 °С, после чего начинается интенсивное повышение ударной вязкости; максимум ее достигается при 600 °С. В некоторых сталях (легированных) отпуск примерно при 300 °С снижает ударную вязкость, которая повышается лишь при отпуске выше 450-500 °С. Явление это будет рассмотрено дальше (гл. XVI, п. 2).

Мы уже рассматривали изменения свойств стали в зависимости от температуры отпуска. Температура отпуска — наиболее существенный фактор, влияющий на свойства отпущенной стали. При отпуске протекают диффузионные процессы, поэтому выдержка на той или иной стадии способствует превращениям, происходящим при данных температурах.

Продолжительный отпуск можно заменить более коротким, но при несколько более высокой температуре. Если температуру и продолжительность отпуска сбалансировать таким образом, что твердость будет одинаковой (такие отпуски называются изосклерными), то и остальные механические свойства будут близкими.

В отличие от некоторых легированных сталей механические свойства углеродистых (и многих других) сталей не зависят от скорости охлаждения после нагрева до температуры отпуска. Свойства стали после отпуска зависят только от температуры и продолжительности отпуска.

Categories

1
Оглавление
email@scask.ru